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Chapter 1

Introduction

Yielding a high performance is one of the main motivations behind parallel
computing. In the past, different programming models for parallel com-
puting have been developed. Among these, divide and conquer is a model,
where work is recursively split into subtasks. These subtasks are computed
in parallel on a set of nodes and their results are eventually merged again.

In the basic case, the distributed computation is performed on a static set
of nodes. These nodes are selected prior to the application launch. However,
in general it is unknown in advance which configuration performs best for
a given algorithm. Self-adaptation is an automated way to optimize the
execution of a parallel algorithm to certain criteria, e.g. to maximize parallel
speedup.

In this chapter, we first explain the principles of divide and conquer.
Next, Satin will be presented, a system implementing a divide and conquer
programming model. We will then define the concept of self-adaptation.
Finally, we will state the research goal of our work.

1.1 Divide and conquer system characteristics

Divide and conquer (D&C) is a parallel programming model that recursively
divides a problem into smaller subproblems. Problem division is continued
until the subproblems become trivial or at least simple enough to be solved
sequentially. The divided work is distributed over several machines that
collaborate in computation.

D&C systems use hierarchically-structured task graphs to spawn sub-
problems and link them to their parents. Every node participating in the
parallel computation is responsible for solving at least one part of this task
graph. Figure 1.1 shows an example task graph. In this example, a task is
split into two subproblems each. The recursion depth is equal to the depth
of the graph. The dotted lines group tasks that are executed locally on one
node. Recursion demands that a node waits for results of subtasks that
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Figure 1.1: An example task graph of a D&C system

are computed by other nodes. A task is finished when the results of all its
children are returned and processed.

1.2 The Satin Divide and conquer system

Satin [20] is specifically developed for running D&C applications on dis-
tributed memory systems. In Satin, single-threaded Java programs are par-
allelized by annotating methods that can run in parallel. The Satin com-
piler enhances the annotated methods with mechanisms to split up work and
merge results. It supports two basic primitives of D&C systems, namely the
spawn and sync operations.

In Satin, a spawn operation is a special form of a method invocation.
Methods that can be spawned are annotated with a marker interface. For
each call of an annotated method, new subtasks are spawned and put into
a work queue. Items in this queue either can be computed locally or by
a remote node. The sync operation will wait until all spawned calls in a
method invocation are finished. A Satin example application is shown in
Appendix A.

Load balancing in Satin is done using a work stealing algorithm called
cluster-aware random stealing (CRS). A node running out of tasks tries to
steal work from other nodes. It sends both an asynchronous request to a
random node outside its cluster (to minimize communication latency) and a
synchronous request to a random node in its own cluster. Nodes receiving a
request will either send a task back or respond with an error if they currently
do not possess any tasks. An idle node will continue stealing until it retrieves
a task or until the application finishes.

In addition to the basic mechanisms described above, Satin also offers
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other features such as shared objects, a global abort mechanism and fault
tolerance. For a complete description of the Satin system refer to van Nieuw-
poort et al. [20].

1.3 Definition of self-adaptation

Self-adaptation is a broad concept to adapt parts of a parallel system to
obtain a better performance. There are two different self-adaptation ap-
proaches; algorithm adaptation and resource selection. The first tries to
adapt the algorithm during runtime to improve its performance. Possible
actions that can be taken are, for example, increasing the grain size of jobs
to minimize communication overhead. This approach requires knowledge
of the underlying algorithm. Resource selection aims at finding the set of
worker nodes which performs best in a given execution. This can be done
by adding nodes to computation, removing nodes or replacing nodes with
other nodes. Resource selection can be useful in a wide range of scenarios,
for example, if:

• the optimal node configuration is unknown in advance

• algorithm parallelization requirements are dynamic over time

• additional loads decrease the performance of a subset of nodes

• nodes or networks fail and need to be replaced

• new hardware becomes available during runtime

Given this broad applicability, in this thesis we focus on resource selec-
tion for self-adaptation.

1.4 Research goal and scope

This work is aimed at developing a general self-adaptation framework for
D&C systems. Our goal is to minimize the application runtime, i.e. max-
imizing the speedup of a parallel algorithm execution. Our approach is
developing self-adaptation heuristics that help to converge towards a set of
nodes that perform best under the criterion of run-time minimization. These
heuristics are to be integrated into a self-adaptation framework that does
not require the programmer to change or annotate a parallel algorithm. As
stated above, we use resource selection as self-adaptation mechanism that
allows for meeting this constraint. The framework is to be made generic for
it to be used in any heterogeneous parallel programming environment imple-
menting the D&C paradigm and an integration should require as minimal
effort as possible.
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Although this work aims at supporting a broad range of parallel algo-
rithms, we define certain requirements to algorithms than can be adapted
with our framework. First, we require the parallel algorithm to implement
the D&C model. Next, the computational complexity of leaf tasks (i.e. im-
mutable subproblems) must not vary significantly. The performance met-
rics applied in the developed framework are more accurate if subtasks are
homogeneous. Last, although computationally complex leaf tasks are also
supported, self-adaptation is more efficient with less complex leaf tasks.

1.5 Main contributions of this work

The following list gives the basic contributions of this work:

• We introduce general applicable performance metrics (productivity)
that can be used for self-adaptation of a broad range of D&C applica-
tions.

• We show that our performance metrics work better than a recent re-
lated self-adaptation approach of D&C applications.

• We discuss three self-adaptation strategies (hill climbing, outlier re-
placement and failure watchguard) that allow for efficient resource se-
lection mechanisms.

• Used in combination, these strategies perform always better than a
non-adaptive application run (in our evaluation, up to factor 5). In
the worst case, i.e. when the application run does not require any self-
adaptation, we show that the self-adaptation overhead is insignificant
(in our evaluation, merely 0.66% performance loss).

• We present a generic framework that incorporates our work and can
be used by other research groups.

The remainder of this work is structured as follows. In chapter 2, we describe
the basic architecture of our self-adaptation framework. From the research
goal follows that there are basically two problems that need to be explored.
First, we need to gather statistics on each node that allow for an assess-
ment of the current node configuration. We will extensively describe our
performance measurement approach in chapter 3. Based on this data, we
need to develop a self-adaptation mechanism that meets our research goals.
We therefore present the self-adaptation strategies that we implemented in
chapter 4. Given a reference integration of the framework into Satin, we
evaluate our approach in chapter 5. Next, we show potential future work in
chapter 6 and compare our work with related work in chapter 7. Finally, we
conclude our work in chapter 8.
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Chapter 2

Self-adaptation framework

Self-adaptation raises two substantial challenges that need to be solved.
First, we need to develop metrics and mechanisms that measure the perfor-
mance of a parallel algorithm run. These performance measurements will
serve as input for a self-adaptation process. Intermediate measurements,
in addition to a performance evaluation after program termination, allow
for an integration of feedback loops to the self-adaptation process. Second,
intelligent strategies are required to perform self-adaptation based on this
performance data. These strategies aim at optimizing the actual perfor-
mance according to certain criteria, e.g. maximizing the parallel speedup.
To separate these two main challenges, we modeled a self-adaptation frame-
work that divides these two task in a client-server architecture. Whereas on
server-side performance statistics of the parallel application are gathered,
the client-side applies self-adaptation strategies based on this data.

Environment 

adapter
SA server SA client

Divide and conquer system

Figure 2.1: The self-adaptation framework structure

Figure 2.1 gives a basic overview of the framework that was integrated
into a D&C system. The D&C system comprises of active nodes (i.e., nodes
that already participate in the calculation) and inactive nodes (i.e., nodes
that are available for computation). The framework is integrated into the
D&C system via a pluggable Environment adapter. This adapter is D&C
system-specific and acts as a communication interface between the D&C sys-
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tem and the self-adaptation server (SA server). This server is responsible
for gathering performance statistics. It regularly requests performance data
from worker nodes in the D&C system. Moreover, the SA server provides
functionalities to administrate this data and offers a well-defined interface to
communicate with a self-adaptation client (SA client). This client is respon-
sible for the actual self-adaptation decision making. An SA client retrieves
statistical data from the SA server and bases self-adaptation strategies on
this data. The strategies lead to adaptation decisions, which are passed to
the SA server and in turn forwarded to the D&C system. Finally, the D&C
system enforces these adaptation decisions by, for example, adding nodes to
computation or removing nodes. Detailed implementation descriptions of
the SA server, SA client and environment adapter are attached in Appendix
C. In addition, a complete description of the client-server API is attached
in Appendix D.

The chosen structure allows for a generic and yet adaptive framework.
The environment adapter is a passive element of the framework that trans-
lates communication between the SA server and a specific D&C system.
In detail, the environment adapter needs to pass statistics requests from
the SA server to the D&C system, forward the according responses with
statistic data back to the SA server and pass self-adaptation decisions made
by the SA client to the D&C system. Thus, a successful integration of the
framework into a D&C system requires implementing a specific environment
adapter that can communicate with a given D&C system. In addition, the
D&C system needs to a) implement an interface to collect statistics and
send them on requests and b) implement adaptation functionality such as
adding, removing, pausing and resuming nodes. In this work, we will show
a reference integration of the framework into Satin.

Another advantage of our design is that it allows for an easy adjustment
of the self-adaptation decision making process done by the SA client, without
the need to touch the SA server at all. Moreover, the scheme supports
multiple SA clients. Although developing a self-adaptation strategy was our
primary intend for SA clients, we can also imagine other applications, such
as grid monitoring software, that can make use of the statistical data offered
by the SA server.

6



Chapter 3

Self-adaptation statistics

This chapter describes a model of how to gather and edit performance statis-
tics such that they can serve as input for self-adaptation mechanisms. In
the first section, we discuss metrics that help to assess the performance of
a parallel algorithm execution. Next, we will evaluate our metrics against
an approach described in the literature. The last section contains details on
how we gather performance statistics from D&C worker nodes.

3.1 Performance metrics

D&C applications split a task into smallest subproblems, the so called leaf
tasks. Given our assumption of homogeneous leaf tasks, the frequency in
which nodes compute leaf tasks is a measure of how fast an algorithm pro-
gresses. We will describe metrics based on this measure that help to monitor
the performance of a parallel application.

3.1.1 Local performance metrics

This section defines speed, efficiency and productivity, three basic notions
to express the performance of a single node. We will start by defining the
speed of a node k as:

speedk = # of leaf tasks computed per time interval without parallel overhead
(3.1)

In other words, the speed is the frequency of leaf task computations in
a parallel application in an ideal world, excluding all parallel overhead such
as load balancing, communication delays or idle times. To also incorporate
parallel overhead, we define the efficiency of node k as the ratio of the total
runtime the node actually spends on computation:

efficiencyk =
time on computationk

total timek
(3.2)
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The product of both measures indicates how much a node contributes
to computation. We define this term as productivity. It shows, how many
tasks a node k actually computes, taking into account parallel overhead:

productivityk = efficiencyk ∗ speedk (3.3)

3.1.2 Global performance metrics

The metrics defined above indicate the performance of a single node only.
To measure the performance of a parallel algorithm, it is required to consider
statistics of all nodes that actively participate in the computation. We will
start by defining the total speed of all N nodes:

total speed =
N∑

k=1

speedk (3.4)

This measure merely represents the theoretical maximum performance
considering linear speedup without any parallel overhead. In particular if
many nodes are part of the process, the parallel overhead is not negligible.
The total productivity, therefore, is a measure of how fast the computation
proceeds globally:

total productivity =
N∑

k=1

(efficiencyk ∗ speedk ) (3.5)

Our work is based on the assumption that this measure is a good estimate
of the actual application runtime, which we try to minimize. It is important
to realize that a higher total productivity leads to shorter application run
times, and vice versa.

As a last measure, we define the total efficiency of all computing nodes.
The total efficiency indicates which ratio of globally available run time is
used for actual algorithm computation. A first approach would be averag-
ing the node efficiencies. This approach, however, does not normalize the
efficiency values for the speed of a given node. Instead, in order to estimate
which ratio of computational power is effectively used, the total efficiency
should take into account different node speeds. We define total efficiency as:

total efficiency =
total productivity

total speed
=

∑N
k=1 (efficiencyk ∗ speedk )∑N

k=1 speedk

(3.6)

As a side note, we remark that the total efficiency and total productiv-
ity show a correlated behavior. This is of particular importance when the
efficiency is to be kept within given bounds. We show the effects of adding
and removing nodes on this correlation in Appendix B.
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3.2 Related performance metrics

In 2007, Wrzesinska [23] presented a self-adaptation mechanism for algo-
rithms implementing the D&C paradigm. Whereas our work uses the met-
rics of productivity, Wrzesinska defined a measure called weighted average
efficiency to assess the performance of the system:

wa efficiency =
∑N

k=1 relative productivityk

N
(3.7)

The wa efficiency is called weighted, since it takes into account the rel-
ative productivity of a node. The node with the highest speed defines its
relative productivity as its own efficiency and determines the maximum pro-
ductivity. For all other nodes, the relative productivity of node k is com-
puted by relative productivityk = productivityk/maximum productivity,
i.e. a value ∈ (0, 1]. Wrzesinska states the purpose of this was to model slower
nodes as less efficient, under the assumption that adding slower nodes yields
less benefit.

The crucial difference between the wa efficiency and our definition of
total efficiency in equation 3.6 is that the wa efficiency does not normalize
the nodes according to their speed. As a consequence, the wa efficiency
can deliver misleading data in certain situations. Table 3.1 shows an ex-
ample, where the wa efficiency gives wrong indications about the total effi-
ciency. It shows a parallel computation with four active nodes, where two
of them are faster than the others. Both the efficiency (equation 3.6) and
the wa efficiency (equation 3.7) are calculated for each setting.

Table 3.1(a) shows the initial situation of the scenario, with two nodes
being slow but efficient and the other two fast but inefficient. In case of table
3.1(b), a slow but efficient node is removed from computation. As a result,
the total efficiency decreases (since a highly efficient node left the compu-
tation), but the wa efficiency increases. Similarly, table 3.1(c) simulates re-
moving a fast but inefficient node. In this case, the total efficiency increases
(since a very inefficient node left the computation), but the wa efficiency
increases.

This example indicates that wa efficiency is not a good way to express
the total efficiency of the computation. As mentioned earlier, it does not
consider the total sum of relative productivities. The formula assumes ev-
ery node to have a relative speed of 1 when dividing the sum of produc-
tivities. Therefore, the wa efficiency works better for homogeneous systems
and clearly disfavors systems where at least one node has a relatively high
speed.

As a consequence, the wa efficiency is an unreliable source for self-
adaptation. Despite this, Wrzesinska [23] performed self-adaptation by
keeping the wa efficiency within the bounds of 30%–50%. Whenever the
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(a) Initial configuration

node ID speed efficiency productivity relative pr.
1 50 T/s 40% 20 T/s 0.4
2 50 T/s 40% 20 T/s 0.4
3 10 T/s 80% 8 T/s 0.16
4 10 T/s 80% 8 T/s 0.16

productivity 56 T/s
efficiency 46.6%

wa efficiency 28.0%

(b) Removed slow, but efficient node

node ID speed efficiency productivity relative pr.
1 50 T/s 40% 20 T/s 0.4
2 50 T/s 40% 20 T/s 0.4
3 node removed
4 10 T/s 80% 8 T/s 0.16

productivity 48 T/s
efficiency 43.6%

wa efficiency 32.0%

(c) Removed fast, but inefficient node

node ID speed efficiency productivity relative pr.
1 50 T/s 40% 20 T/s 0.4
2 node removed
3 10 T/s 80% 8 T/s 0.16
4 10 T/s 80% 8 T/s 0.16

productivity 36 T/s
efficiency 51.4%

wa efficiency 24.0%

Table 3.1: Example where wa efficiency misbehaves. After (a) the initial
situation, both (b) a slow node and (c) a fast node are removed.

wa efficiency drops below 30%, Wrzesinska removed nodes from computa-
tion to increase the wa efficiency. As table 3.2 on page 11 indicates, this
strategy can fail in heterogeneous environments. Although all nodes have
an excellent efficiency of 100% and adding a node would in general raise the
speedup, the strategy suggests removing a node. In this work, we therefore
base our work on the definition of productivity.
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node ID speed efficiency productivity relative pr.
1 60 T/s 100% 60 T/s 1.00
2 10 T/s 100% 10 T/s 0.17
3 10 T/s 100% 10 T/s 0.17
4 10 T/s 100% 10 T/s 0.17
5 10 T/s 100% 10 T/s 0.17
6 10 T/s 100% 10 T/s 0.17
7 10 T/s 100% 10 T/s 0.17

productivity 120 T/s
efficiency 100%

wa efficiency 28.6%

Table 3.2: Scenario where the wa efficiency drops below the 30% bound

3.3 Statistics gathering

The self-adaptation server of our framework regularly queries any available
node for a statistical report. This report contains performance statistics of
a particular node in a given measurement interval, according to the met-
rics described above. To overcome temporal deviations in the performance
statistics, we aggregate λ subsequent node statistics to a single statistical
block. Deviations in performance, e.g. caused by short-term work loads at
nodes, can lead to wrong assumptions when relying on the most recent mea-
surement only. A higher weight is given to more recent measurements, since
this data is more up-to-date than older statistics. As an example, Equa-
tion 3.8 computes the productivity of the most recent λ measurements. ρ
determines the age of a measurements, i.e. productivity1 is the most recent.

block productivity =

∑λ
ρ=1 (αρ ∗ productivityρ)∑λ

ρ=1 α
ρ

(3.8)

In equation 3.8, the parameter α ∈ (0, 1] determines the weight for more
recent statistics. The higher α, the less weight is given to more recent
data. α = 1 equals a normal (unweighted) average of all λ values. In our
implementation, we chose to aggregate λ = 5 measurements to a single block.
The aggregation is done with α = 0.8, i.e. the most recent measurement
makes up ∼ 30% of the total average.

In addition, we included a mechanism to normalize statistics for measure-
ment inaccuracies. In practice, both broadcasting the request to all nodes,
as well as locally processing the statistics requests takes some time, say Tproc.
If this time Tproc is irregular, the locally collected statistics at a node are
not relative to the measurement interval Tint anymore and slightly differ per
interval. Therefore, every node additionally includes the time Tpassed in the
statistical data. Tpassed is the time interval in which the provided statistics
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were actually measured. Upon receipt of the statistics along with Tpassed,
the collector process can normalize the statistics back to Tint by calculating
normalized stats = actual stats / Tpassed ∗Tint. As a result, the normalized
statistics of each node share a common base.

Moreover, there is a need to automatically adapt the length of the mea-
surement interval when gathering statistics. In cases where the measurement
interval is too short, the collected statistics are inaccurate. For example, let
the interval Tint = 1 second, and computing a single task also takes 1 second.
This would practically allow the statistics to vary between 0–2 performed
tasks per interval. A possible counter measure is to increase Tint for as long
as the average productivity of all nodes is below a minimum productivity
threshold. In general, however, the measurement interval should be kept
small. More frequent measurements allow for quicker reactions on perfor-
mance changes. This is the main reason why computationally cheap leaf
tasks allow for a faster adaptation (as mentioned in section 1.4)
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Chapter 4

Self-adaptation strategies

In this chapter, we show the need to develop intelligent self-adaptation
strategies. After that, we present three strategies that are integrated in our
self-adaptation framework. First, we examine the hill climbing algorithm
that strives to find a good set of nodes during algorithm runtime. Next, we
will discuss the outlier replacement strategy that allows for migrating work
from poorly performing nodes to better locations. Lastly, we focus on the
failure watchguard that checks if nodes failed and replaces them accordingly.

4.1 Motivation for self-adaptation strategies

A first approach to find the ideal set of nodes is exploring all combinatorial
possible node configurations. Given a static system, this strategy is guar-
anteed to find the optimal solution. However, exploring the entire search
space will add a tremendously high overhead to the self-adaptation process.
In this section, we will discuss how to deal with the complexity of finding
the best solution.

In theory, having N different nodes, exactly 2N −1 possible node config-
uration exist. Considering the overhead of exploring all these configurations,
it is impossible to evaluate each configuration separately. In addition, the
underlying algorithm or node/network performance may change over time.
Thus, comparing two configurations explored at two different points in time
is prone to errors.

Instead of performing a brute-force approach, we require intelligent self-
adaptation strategies that strive towards finding a well-performing config-
uration. These strategies avoid exploring the entire search space and take
into account that previous evaluations may become outdated.
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4.2 Hill climbing

The hill climbing strategy is a powerful tool for finding a node configuration
that performs well without exploring the entire search space. It basically
adds and removes nodes from the set of computing sites and remembers the
set that performed best.

4.2.1 Basic algorithm description

The pseudocode of Algorithm 1 summarizes the behavior of the basic hill
climbing algorithm. The hill climbing algorithm starts by adding random
nodes as long as the overall productivity increases. After each adaptation,
the algorithm compares the previous and current total productivity values.
As soon as the productivity decreased with an adaptation, it switches the
climbing direction and starts removing the least productive node. Again,
it continues removing nodes as long as the productivity is rising. At the
point in time when removals also decrease the productivity, the hill climbing
algorithm keeps the last configuration and terminates.

direction← ADD
maxProductivity ← currentProductivity

while direction 6= FINISHED do
currentProductivity ← recently measured total productivity
if currentProductivity < maxProductivity then

/* last change was not succesful */
if direction = ADD then
maxProductivity ← currentProductivity
direction← REMOV E /* switch to remove now */

else
direction← FINISHED /* terminate */

end if
else

/* last change was succesful, redo */
maxProductivity ← currentProductivity
if direction = ADD then

add random node to computation, if any available
else

remove least productive node from computation
end if

end if
end while

Algorithm 1: The basic hill climbing algorithm
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The major advantage of the hill climbing algorithm is that it limits the
adaptation overhead to a minimum. The basic algorithm involves a total
of only two adaptation steps that decrease the productivity; all other steps
increase the productivity.

4.2.2 Algorithm enhancements

In practice, it is not guaranteed that the basic hill climbing algorithm finds
the optimal configuration. Moreover, it will take very long until the algo-
rithm terminates in certain scenarios. In this section, we expand the basic
algorithm with several improvements.

So far we assumed that changes due to adaptation by the algorithm will
have an effect on the performance metrics immediately. Adding and remov-
ing nodes however requires some time. In addition, an added node needs to
get work from other nodes before it actually helps to raise the productivity.
The same holds for a node removal, where the leaving nodes need to spread
their work to the remaining nodes. As a result, it may take some time be-
fore the effects of the adaptation can be observed in the gathered statistics.
Therefore we include a so called grace period to the algorithm. This period
defines an interval after adaptation, in which statistics are ignored for fur-
ther processing. In other words, the algorithm sleeps for the grace period
after an adaptation step and gives the new configuration a chance to con-
verge towards stable productivity data. Figure 4.1 illustrates the integration
of a grace period to the hill climbing algorithm.

Initialization phase Grace period Grace period

1 2 3 4 5

Action
Statistics

Hill 

climber

Action
Statistics

Hill 

climber
=  interval separator

=  block separator

time

Figure 4.1: Interaction between hill climber and grace periods

In an ideal world, the number of tasks performed by a node does not
vary over time. In practice, however, small irregularities in productivity
measurements are observable even in static systems. In addition, the non-
deterministic measurement process slightly influences the number of tasks
completed per interval. Therefore, it is sensible to introduce a tolerance
against these deviations to the algorithm, referred to as toleranceFactor. The
hill climbing process switches its direction if and only if currentProductivity∗
toleranceFactor < maxProductivity. This allows the algorithm to continue
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processing even if it is moving away from a local maximum already. This
mechanism is crucial to overcome small deviations in performance data, al-
though it may introduce some adaptation overhead.

Once the algorithm terminates, the hill climbing algorithm has found a
good configuration of nodes that performs well. In case of dynamic algorithm
behavior, this configuration may perform well at one moment, but may result
in significant under- or over-provisioning of resources at a later moment.
Therefore it is sensible to include a restart mechanism into the hill climbing
algorithm. The algorithm restarts, if more recent statistics significantly
deviate from earlier measurements or if new hardware becomes available.
In addition, the client enforces a restart after maximumInactivityLenght
intervals of inactivity.

4.2.3 Accelerating the adaptation

Given the fact that a grace period follows each adaptation, converging to-
wards a good set of nodes may be a time consuming task. We added a
feature called accelerator to mitigate this issue. Depending on the impact
on productivity of the previous adaptation, the accelerator enforces mul-
tiple adaptations in the same direction at once. This allows for a faster
convergence to a good set of nodes. Therefore, the accelerator feature first
computes the productivity gain of an adaptation as:

productivity gain = total productivitynew − total productivityold (4.1)

Depending on the number of active nodes N and the accelerator factor
β, the adaptation step size for the next adaptation is computed as:

adaptation step size =
productivity gain

total productivity
∗ β ∗N (4.2)

According to equation 4.2, the adaptation step size is high, if the pre-
vious adaptation yielded a close-to-linear improvement in productivity. A
decrease in performance forces the accelerator to stop, small improvements
lead to smaller future step sizes. The factor β indicates how aggressive the
accelerator should adapt the number of nodes.

Figure 4.2 indicates how the accelerator behaves when adding and re-
moving nodes. We chose β = 2 when adding nodes, and a more conservative
setting of β = 1.5 when removing nodes. Each curve represents the possible
productivity development (y-axis) in relation with the number of nodes (x-
axis). We show in Figure 4.2(a) how the accelerator behaves when adding
nodes, with an initial configuration of 1 active node. In most of the scenar-
ios, an aggressive setting of β = 2 overshoots the productivity maximum. As
a consequence, the optimal configuration is reached only if the hill climbing
starts removing nodes again. In the case of an early and slow convergence
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(lowest line), the accelerator becomes inactive having 82 active nodes and
only single nodes are added to computation from this point on. This behav-
ior is not ideal, but the deviation from the ideal set of nodes has a negligible
effect on the total performance.

In figure 4.2(b) we show the node removal process, with an initial con-
figuration of 200 active nodes. A more conservative setting of β = 1.5 limits
the risk of skipping the maximum. Choosing the right accelerator factor is
a trade-off between the convergence speed and the adaptation correctness.
We see that the flat convergence (bottommost line) forces the accelerator
to stop early. Again, in this case, the negative effect of this deviation from
the ideal number of nodes is negligible. In the other two cases, the removal
proceeds quickly and the accelerator terminates after 7 and 9 adaptation
phases, respectively.

Although the ideal configurations were missed in most of the scenarios,
the accelerator is still a powerful tool. Its main goal is to quickly find a good
solution, even if it is not ideal. If the hill climbing algorithm is restarted
after a while, the initial configuration is different from the first run. The
accelerator will most likely not be active in a second run, allowing the hill
climbing algorithm to climb towards the ideal configuration. In section
5.2 we will return to this issue and show the behavior and impact of the
accelerator for a real execution scenario.

4.3 Outlier replacement

Apart from the adding and removing of nodes, a second important self-
adaptation strategy addresses work migration away from slow nodes. The
outlier replacement strategy replaces poorly performing nodes with better
ones.

4.3.1 Basic algorithm description

The outlier replacement strategy focuses on nodes that perform worse than
average. The strategy calculates how the productivity of a node performs
compared to the median productivity. If the relative difference exceeds
the so called maximum deviation threshold, it is replaced by another node
chosen randomly from the set of available nodes. Algorithm 2 describes the
procedures of the basic outlier replacement algorithm.

4.3.2 Algorithm enhancements

In certain situations, the outlier replacement algorithm will iterate replacing
identical nodes. Consider a grid of 10 available nodes, where two nodes A
and B are slower candidates. Let the faster 8 nodes and A be active in an
initial situation. As A performs very badly compared to the other nodes,
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sort active nodes Θ by ascending productivity
currentMedian ← median(productivities in Θ)

for n ∈ Θ do
/* iterate over all nodes, from slowest to fastest */
slowerThanMedian ← 1− n.productivity/currentMedian
if slowerThanMedian > max deviation threshold then

/* deviates too much from median productivity */
replace n with random inactive node

else
/* productivity in boundaries, next nodes perform better */
return

end if
end for

Algorithm 2: Basic outlier replacement algorithm

it is replaced by a random node. In our case, only B is available, and re-
places A. B in turn does not perform better, and is going to be replaced
by A again. In our work, we mitigated this issue by adapting the maxi-
mum deviation threshold according to the feedback of a node replacement.
If the productivity gain of the previous adaptation done by the outlier re-
placement strategy is negative, the maximum deviation threshold from the
mean is increased by a factor ξ. In the scenario of iterative replacements
mentioned above, the threshold will eventually be set high enough such that
the replacement condition is not valid anymore.

4.4 Failure watchguard

A third and last implemented strategy is the failure watchguard. This strat-
egy is responsible for tracking which nodes are currently running and pro-
viding statistics. If a node failed sending statistics the watchguard starts
observing this node. The failure watchguard tolerates a node temporarily
not sending any data, e.g. due to high temporal loads. However, if a node
fails communicating during the entire toleration period, it will be considered
as failed and be replaced. There is a trade-off in choosing the length of the
toleration period. If the period is too long, a node failure is detected quite
late and performance is lost by replacing the failed node relatively late. Too
short tolerance periods, on the other hand, may dismiss nodes that tem-
porarily failed to send statistics but that still actively participated in the
computation.
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Chapter 5

Evaluation

This chapter gives an evaluation of our work. In the first section, we describe
the setup that was used for the evaluation. The next three sections give an
isolated evaluation of the three strategies that we developed in Chapter 4.
Finally, the last section evaluates an extensive scenario in which all three
strategies are used in collaboration.

5.1 Evaluation setup

The first part of our evaluation setup description explains the reference
integration of our framework into a D&C system. Next, we will discuss a
D&C algorithm that was used during the evaluation. The last subsection will
describe the self-adaptation strategy configuration used for the evaluation.

Reference integration

For the evaluation, we integrated the self-adaptation framework into the
Satin D&C system as discussed in section 1.2. The integration makes use
of two mechanisms that are present in the communication subsystem un-
derlying the Satin implementation [21], namely message upcalls and registry
events. With message upcalls, a subscriber is informed as soon as a Satin
instance received a message by some other node. This mechanism is used
to send statistical data from every node to the statistic collector process. In
addition, registry events are received by the environment adapter. Events
help to inform the adapter whenever a node joins or leaves the computation.
The adapter forwards these notifications to the SA server, that in turn keeps
track of active worker nodes.

In addition, the integration required to change some parts of the Satin
framework. Most importantly, mechanisms to remove nodes from compu-
tation and add nodes to computation were added. Basically, we have two
options here. First, whenever a new worker should be added, a new Satin in-
stance can be spawned. Accordingly, a Satin instance can entirely shutdown
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when it is removed from computation. Results showed that the adaptation
speed of this solution is slow however, in particular if new nodes are added
to the system (e.g. due to the need to go through a cluster reservation sys-
tem). Moreover, spawning new Satin processes requires additional process
information, such as e.g. program parameters.

Therefore, we favored the second option: having a static set of worker
nodes. Whenever a node is removed from computation, it does not terminate
but merely stops computing jobs and sends off the work of his local queue to
other nodes. If a node receives such data, it does not consider the sending
node as active anymore. Also, nodes trying to steal work from inactive
nodes are notified that the node is currently paused. Reducing the set of
active nodes is of particular importance, as parallel overhead is reduced only
if work steal requests are more likely to be answered positively. As soon as
a node resumes computation, it starts stealing work from other nodes. If a
node receives a steal request, it considers the stealing node as active again.
This scheme assures that eventually all nodes know if other nodes are active.

Evaluation algorithm

For our evaluations, we implemented a D&C algorithm that recursively di-
vides a task into four subtasks up to a recursion depth of 15. The leaf tasks
of this algorithm have a negligible small computational complexity. To be
able to control the productivity of each node, we introduced a limitation of
the productivity in Satin that takes into account, how many nodes actively
participate in computation. In general, due to parallel overhead, the higher
the number of active nodes, the lower is the productivity of a single node.
To evaluate dynamic algorithms, we also vary the productivity depending
on the time that passed since the program launch.

This setting allows for an evaluation of our work in a real D&C system.
Having the discussed productivity limitation in place, we can evaluate mul-
tiple productivity search spaces with our self-adaptation framework. We
parameterized our algorithm setup such that we are able to determine the
ideal configuration for each run according to the needs of the given self-
adaptation scenario. Figure 5.1 illustrates an example productivity search
space in that the total productivity increases up to a maximum of 10000
with 17 active nodes. In this example, if more than 17 nodes are active, the
total productivity decreases again due to parallel overhead. We varied the
specific productivity search space according to the needs of any of the follow-
ing evaluations. A self-determined search space enables us to compare the
actual self-adaptation process with theoretically ideal node configurations.
In addition, if required by the scenario, we added events such as having
additional load to every node and simulated node failures. To summarize,
our evaluation algorithm allows for diverse evaluations of our work under a
controlled but realistic D&C application.
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Figure 5.1: Example productivity search space that can be controlled using
our evaluation algorithm

Evaluation strategy settings

As the self-adaptation strategies are parameterized, we will specify here
which settings we used for our evaluation. All self-adaptation strategies
take effect after the algorithm was running for more than 15 measurement
intervals. For all measurements, we had a grace period = 5 measurement
intervals (i.e., 5 seconds) in place. In addition, we instrumented the hill
climbing strategy to use the tolerance factor = 1.03. Furthermore, we en-
forced the inactive hill climbing strategy to restart after maximumInactiv-
ityLenght = 20 intervals. Moreover, we let the failure watchguard ignore a
node to failure up to toleration period = 10 intervals. Finally, the outlier
replacement strategy replaced a node only if it was max deviation threshold
= 0.2 slower than the median node.

5.2 Finding an optimal configuration

We start by evaluating the hill-climbing strategy that aims to find a well-
performing configuration by adapting the number of active nodes. Parallel
algorithms can have a static ideal configuration, but can also change their
parallelization requirements during runtime. We split this section therefore
in two parts. First, we evaluate whether our strategies find well-performing
configurations with algorithms that do not show dynamic behavior and dis-
cuss the introduced overhead. Second, we show how the hill-climbing strat-
egy behaves in dynamic settings.
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5.2.1 Static algorithms

Converging towards a well-performing configuration

Figure 5.2 on page 24 shows two self-adaptation scenarios in a static set-
tings. In Figure 5.2(a), we show an evaluation of our strategies in a scenario
where at program launch too few nodes were active. Starting from a sin-
gle active node, the hill-climbing strategy converges towards the ideal total
productivity. Due to an aggressive accelerator setting, the number of nodes
rockets within 6 subsequent adaptation steps from 1 to 32. Although the
strategy already exceeded the ideal number of nodes after the fifth adap-
tation, it continues due to positive feedback of the fifth adaptation. The
reason for this is that having 12 nodes (5 too few) yielded a lower total
productivity than with 20 nodes (3 too many). As soon as the hill-climbing
algorithm switches its direction to remove nodes, the accelerator uses a more
conservative setting to strive for the ideal configuration. This less aggressive
setting helps to reach the optimum on the way back. After a number of node
removals, the actual number of active nodes converges to the ideal setting.
Although the configuration is constantly adapted and on average 2–3 nodes
away from the ideal setting, it is important to note that the performance as
expressed by the total productivity is close to ideal.

Figure 5.2(b) shows the self-adaptation behavior if initially too many
nodes are active. The hill-climbing algorithm starts to constantly remove
nodes until it exceeds the ideal configuration after 180 measurement inter-
vals. Similar to the first scenario, it continues changing the ideal configura-
tion, but stays close to the optimal performance.

The two scenarios show that the hill-climbing algorithm is capable of
finding a well-performing configuration with a static algorithm paralleliza-
tion. We saw that the accelerator is very aggressive when adding nodes and
noted that the node removal process is slow. In addition, the algorithm does
not terminate if it finds a well-performing configuration. This is desired for
adaptation of algorithms with static parallelization requirements, whereas
it would be suboptimal in dynamic settings. We leave it as future work to
further optimize the hill-climbing procedure for static settings.

Overhead of the self-adaptation process

An important quality to measure is the added overhead of the self-adaptive
system with respect to a constant algorithmic behavior. We evaluate the
overhead that was introduced by our self-adaptation framework with two
different static productivity search spaces.

In the first scenario, our evaluation algorithm performs best having a
static set of N = 50 nodes. Figure 5.4(a) on page 26 draws the productivity
search space dependent on the number of nodes and measurement interval.
The self-adaptation was performed as shown in figure 5.4(b). The adaptation
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Figure 5.2: Performance of self-adaptation in finding the optimal configura-
tion
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strategies constantly adapt the set of active nodes. During the runtime,
there is rarely a point in time, where the ideal configuration is hit. On the
other hand, the productivity does not vary more than the tolerance factor
allows for. In this case it becomes obvious that the tolerance factor needs
to considered very carefully.

As additional evaluation of this scenario, we cumulated the productivity
in each time interval to a productivity sum that is achieved during the entire
runtime of 7000 intervals. Figure 5.3(a) shows the overhead in this scenario
that was introduced by our self-adaptation framework. The first value in
each graph is the productivity that was achieved by having an ideal set of
nodes in place. The second bar indicates the performance that was achieved
using the adaptation framework. The third bar gives a comparison to the
best performing static set of nodes. For this comparison we assume that the
ideal configuration of nodes is known in beforehand. In this specific case,
the adaptation yields a performance loss of 1.18% compared to the static
and ideal set of nodes (both are equal).
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Figure 5.3: Productivity sum during runs with static algorithms, measured
in the total number of computed leaf tasks during a runtime of 7000 seconds.

In the second scenario, instead of having a constant productivity, the
productivity search space has some small deviations over time. This sce-
nario tries to address the issue that, in practice, there are fluctuations in
productivity measures over time, though the average productivity is con-
stant over time. Figure 5.5(a) on page 27 draws a productivity graph of
a possible scenario, in which the ideal number of nodes is always close to
N = 50. According to figure 5.5(b), the self-adaptation strategy is stable
against this scenario. It can be seen that the strategy rarely adapts towards
an outstanding slow configuration. Figure 5.3(b) shows that the added over-
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Figure 5.4: The ideal number of nodes is constant
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Figure 5.5: The ideal number of nodes varies only slightly from 50
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head is less if the productivity has slightly fluctuations. Again we assume
that the ideal configuration is known prior to the algorithm launch. This
time, due to the small variations in the productivity search space, the hill
climbing algorithm terminates faster and yields a smaller error. The added
overhead in this scenario is a loss of 0.56% compared to the static run, and
merely 0.66% compared to the ideal performance.

Possible improvements to scenarios with static algorithms could be to
stop adaptation, if the total productivity does not change over time. In
addition, in order to continue running with the ideal set of nodes, one would
then need to restore to the best configuration found so far. Although this
scheme works very well for static algorithms, it virtually always fails in dy-
namic environments. In such environments, a configuration that achieved
the highest productivity in the past is most likely not the current best con-
figuration any longer. Clearly there is a trade-off to make between having a
general adaptation scheme with limited overhead, or a scheme with virtually
no overhead but not supporting dynamic algorithms.

It is very likely, however, that the self-adaptation scenarios overwhelm
or at least compensate the small overhead. In addition, for the scenarios
discussed above, we assumed that the ideal configuration was known. As
shown in this section, our self-adaptation framework is able to converge to
this ideal configuration even if it is unknown. In cases where the estimation
of the ideal configuration as done by a human is wrong, our self-adaptation
framework will virtually always outperform even static algorithms with a
static configuration.

5.2.2 Dynamic algorithms

In this section, we discuss four scenarios with dynamic algorithm behavior, a
subset of all possible situations that show distinctive patterns in dynamics.
For the evaluation, we created productivity search spaces that depend on
the time that was passed since the application launch. At any point in time,
a specific configuration is ideal. For simplicity, we focus our evaluation in
this section on homogeneous environments and express a configuration by
N , the number of active nodes. For the evaluation of dynamic algorithms,
we further limited the maximum number of active nodes to N = 100. The
following subsections shows how effectively the hill-climbing strategy handles
dynamic algorithm behavior. In each of the four scenario, we will compare a
self-adapted algorithm execution with both an execution with an ideal static
set of nodes and a dynamic ideal configuration dependent on the time.

Steady increase of active nodes

If the parallel overhead decreases over time, more nodes can be added to the
computation to achieve a higher productivity. Figure 5.7(a) shows a possible
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productivity search space for such a scenario. Whereas in the beginning a
few nodes achieve the highest speedup, at a later stage the ideal number of
active nodes increases.

The self-adaptation mechanism adapts to these changing circumstances,
as plotted in figure 5.8(b). During the first half of the run, the strategy
is only adding nodes. Although it adds more nodes than ideal, the total
productivity increases due to the development of the productivity search
space over time. In this specific scenario, all three possible decisions by the
hill-climbing strategy (i.e., adding a node, removing a node, doing nothing)
would lead to a gain in productivity. Therefore, first when reaching the
maximum of 100 active nodes after 3,600 intervals, the algorithm switches
the adaptation direction to node removal. Not having the limit of 100 nodes
in place, the strategy would continue adding nodes until it reached a decrease
in productivity when adding nodes. Adding speculative direction changes,
i.e. switching the direction although the productivity is increasing, may be a
reasonable option to further improve the hill-climber algorithm. The number
of active nodes however does not necessarily need to be always close to ideal,
as long as the actual productivity is high. Regardless of the fact that the
number of active nodes is far from ideal until measurement interval 4,000,
the actual productivity in this scenario is mostly better than with a static
set of nodes.

Once the hill-climbing direction was switched for the first time at inter-
val 3,600, the hill-climbing algorithm starts removing nodes and terminates
at interval 4,200. As described in the evaluation setup in section 5.1, the
hill-climbing algorithm restarts after an inactivity period of 20 intervals. At
this point in time, adding nodes lets the node configuration converge towards
the ideal configuration, yielding a higher productivity gain by the adapta-
tion than in the initial run of the hill-climbing algorithm. Therefore, the
accelerator adds nodes more quickly now. From this point on, the strategy
repeatedly adds nodes to computation, overshooting the ideal configuration,
and removes other nodes later again. The height of this zigzag behavior is
determined by the tolerance factor, as discussed in section 4.2.2. The higher
the tolerance factor, the bigger are the fluctuations in the number of nodes.
On the other hand, to allow small productivity inaccuracies over time, the
tolerance factor should not be too small. Regardless of the zigzag behavior,
however, the number of active nodes increases on long-term and always stays
close to the ideal node configuration.

Steady decrease of active nodes

In contrast to the previous scenario, the number of active nodes may also
shrink constantly over time. Figure 5.8(a) shows the corresponding produc-
tivity graph. The adaptation to this scenario performs close to optimum,
as drawn in figure 5.8(b). Whereas the static configuration of N = 100
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nodes looses its performance during the runtime, our framework adapts the
number of active nodes and keeps the performance close to ideal.

Similar to the scenario discussed before, nodes are not constantly re-
moved from the system. Again, the zigzag of removing and adding nodes
can be mitigated by shrinking the tolerance factor, with similar counter-
effects as discussed before. In contrast to the scenario before, the node
removal process terminates much faster than adding nodes in the previous
scenario. This is because the total productivity is decreasing due to the given
productivity search space, forcing the hill-climbing algorithm to terminate.

Exponential decrease of active nodes

In contrast to a linear decrease that was discussed before, the number of
active nodes more likely decreases exponentially. Some real applications,
such as the parallel ion recombinition in nonpolar liquids as discussed in [18],
adhere to this behavior. Figure 5.9(a) shows how a possible productivity
search space may look like.

The self-adaptation strategies covered this scenario very well. As plotted
in figure 5.9(b), the strategy adapts close to the ideal number of nodes. In
contrast, according to our special scenario, a static set of nodes behaves
bad. If the number of active nodes leaves the ideal number of nodes, a high
penalty highly influences the productivity. We observe that the bigger the
difference between productivities of an ideal and of a non-ideal set of nodes,
the worse will a static set of nodes perform.

Periodical changes of ideal configurations

In some D&C applications, bursts of work are sent and need to be synchro-
nized, before new work is spread. In such systems, the ideal set of active
nodes might periodically change over time. Figure 5.10(a) shows a possi-
ble productivity search space of such a scenario. An adaptation mechanism
needs to quickly react to changes, just before they are reversed again.

Figure 5.10(b) shows how the self-adaptation framework works with such
graphs. It can be observed that the adaptation strategy is not always ideal in
this scenario. In particular, in periods where the ideal productivity rapidly
increases, the strategy misinterprets this and adds too many nodes to com-
putation. This behavior is similar to the one we observed in section 5.2.2
and might be mitigated by speculative direction changes of the strategy.
The overall performance of the strategy is however very good and has its
strengths when the productivity space asks for many active nodes.

Overall evaluation of adhering to dynamics

As a final evaluation, we will compare the application run times of the four
dynamic algorithm scenarios. Similarly as done before with the static algo-

30



rithms, figure 5.6 summarizes the productivity yielded in 7000 measurement
intervals. In these scenarios, the self-adaptation works always better than a
static set of nodes. The higher the static set of nodes deviates from an ideal
set of nodes, the more our self-adaptation strategy outperforms the static set
of nodes. In particular when the maximum productivity decreases over time
(figures 5.6(b) and 5.6(c)), the adaptation strategies perform close to ideal.
In the linear decrease scenario, a performance gain of 19.5% was achieved
by the self-adaptive system. In the exponential decrease scenario, a gain of
442.3% (!) was measured. If the maximum productivity increases (figure
5.6(a)), a gain of 12.6% was possible. In situations, where the productivity
search space changes fast and periodically (figure 5.6(d)), the adaptation
yielded just a small benefit of 0.6% compared to a static set.
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Figure 5.6: Productivity sums during runs with dynamic algorithms.
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Figure 5.7: The ideal number of nodes steadily increases
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Figure 5.8: The ideal number of nodes steadily decreases
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Figure 5.9: The ideal number of nodes decreases exponentially
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Figure 5.10: The ideal number of nodes periodically changes
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5.3 Reacting to dynamic network- or node loads

This section will evaluate the outlier replacement strategy against two sce-
narios. In both scenarios, 10 out of 16 available nodes are active in com-
putation. After 28 measurement intervals, we increase the load of some of
these active nodes. Figure 5.11 shows the strategy behavior to the scenarios.
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Figure 5.11: Evaluation of the outlier replacement strategy

In case of figure 5.11(a), we added a significant load to a single node,
which has an immediate effect on the total productivity. Although the
node has a high load already at the first test of the outlier replacement
strategy at interval 30, the strategy does not replace the node due to the
aggregated block statistics. First in interval 35 the node is replaced by a
better node. Shortly after node replacement, the total productivity slightly
drops, because the leaving node needs to send its work away to the remaining
nodes. After three interval, the total productivity increases again.

Figure 5.11(b) shows a similar scenario. However, this time significant
load is added to three nodes at once. Again, the replacement is deferred
for an entire statistics block. Similar to the first scenario, the three poorly
performing nodes are replaced. This time, however, the total productivity
after adaptation even exceeds the productivity before the load was added.
Apparently, three slightly slower nodes were replaced by faster nodes.

To summarize, the two scenarios showed that the outlier replacement
strategy is able to deal with nodes that have a poor performance.

5.4 Repairing network- or node failures

In this section, we will evaluate the failure watchguard strategy, as discussed
in section 4.4. We developed two test scenarios for the evaluation. In both
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scenarios, 10 out of 16 available nodes actively participate in a distributed
computation. Starting after 28 measurement intervals however, three of the
active nodes fail sending statistics. In the first scenario, the node failures are
permanent. In the second scenario, the nodes are only temporarily inactive
for 5 measurement intervals.
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(a) Permanent failure
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(b) Temporal failure

Figure 5.12: Behavior of the failure watchguard when nodes fail.

Figure 5.12 shows how the self-adaptation framework reacts to node
failures. Figure 5.12(a) shows that the failure watchguard replaces a single
failed nodes after a tolerance period of 10 intervals. The total productivity
drops after the nodes fail and stabilizes again after the replacement of the
failed nodes. Figure 5.12(b), on the other hand, shows that the failure
watchguard takes into account its tolerance period. Although the nodes
seem to be failed during 5 consecutive intervals, the watchguard does not
replace them. After 5 intervals, the nodes become active again without
interference of the self-adaptation strategy.

5.5 Overall evaluation

As a final evaluation, we evaluate a scenario that requires a collaboration
of all developed strategies to find the optimal configuration. We integrated
a dynamic productivity search space as well as events such as node failures
to our evaluation algorithm, as discussed in section 5.1. Figure 5.13 shows
how our framework adapted the node configuration in a 35 minutes lasting
program execution of this algorithm. The dashed lines show the theoretical
ideal behavior, whereas the solid lines depict the actual performance we
achieved. The x-axis shows the measurement intervals of 1 second length.

The scenario starts with 5 active nodes, whereas 18 nodes is the ideal
configuration. The hill-climbing algorithm manages to converge close to the
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Figure 5.13: Overall evaluation of combined self-adaptation scenarios

optimal configuration after 103 seconds. Starting after 300 seconds, we arti-
ficially change the ideal number of nodes and let it slowly drop from 18 to 6
nodes. During this drop in performance, the hill-climbing algorithm adapted
the number of active nodes towards a smaller set. Although constantly a
few more nodes than ideal were active during this time, the productivity was
close to ideal. In our evaluation setup, too few nodes have a higher negative
effect on the productivity than having too many active nodes.

After 600 seconds, we added some additional load to three active nodes.
As the small dip in productivity indicates, the poorly performing nodes
were replaced by the framework immediately after 2 measurement blocks.
Then, the number of ideal nodes was increased from 6 to 18 nodes again
between the time intervals 1200–1800. The hill-climbing algorithm adhered
to these algorithm dynamics. In between, at interval 1500, we purposely
let three nodes fail. Tolerating temporary failure, the failure watchguard
replaced these nodes in time interval 1511. After 30 minutes were passed,
the strategies adapted the system close to the ideal configuration of 18 nodes.

The overall evaluation shows that our framework is able to find a well-
performing configuration of nodes in many different scenarios. First, the
strategies were able to adapt the initial number of active nodes. Moreover,
the strategies managed to replace failed nodes or nodes with poor perfor-
mance. In addition, the strategies handled situations with a dynamic ideal
configuration. Regardless of the fact that the number of active nodes varies
from the ideal configuration, the achieved productivity is close to ideal. Fi-
nally, this last evaluation has shown that all strategies work well together,
although they interfere with each other. We will discuss possible improve-
ments to the strategies in the next chapter.
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Chapter 6

Future work

This chapter discusses possible enhancements of our self-adaptation frame-
work that we left for future work.

6.1 Assessment of offline nodes

The self-adaptation strategies that we discussed in this work all use a prob-
abilistic approach to pick a new node that is added to computation. Be-
forehand, nothing can be said about this node, and it can only be assessed
after adding it. If node qualities vary, on average only a node with medium
qualities is added to computation. Thus the more heterogeneous the nodes
are, the more important it is to find the optimum node to pick. In this
section, we will discuss two approaches that might help choosing the ideal
nodes to expand the set of calculating nodes.

One approach is based on measurements done by the operating systems
of each node. Possible indications of performance are for example CPU
power, number of CPU cores, CPU cache size, available memory, available
network bandwidth, network latency, etc. A mechanism that can measure
and weigh these metrics is presumable able to tell how well a node fits
into a set of computing nodes. In addition, OS based measurements are
lightweight and do not cause much overhead. Unfortunately, there are some
disadvantages that prevent an easy use of this technique. It depends on
the operating system and on the grid environment if and how this data can
be obtained. Moreover, it deviates from algorithm to algorithm which of
the performance data is crucial for it. A computationally expensive task
might favor nodes with high CPU power, whereas other algorithms require
a generous memory size. Thus, this approach also requires the algorithm
designer to specify the characteristics of a task.

Another approach lets each node measure its performance while comput-
ing a subtask of the actual problem. Each node can test how good it fits to
a parallel computation by running the same parallel algorithm locally. The
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yielded performance gives an indication how suitable a node is for addition.
As long as defining a reasonable subtask size is automated, this approach is
entirely independent from the algorithm and the underlying platform. On
the other hand, it does not provide very reliable performance data. A lo-
cal computation does not incorporate parallel overhead, such as connection
bandwidth and latency. In addition, this technique requires each available
node to run a small benchmark first. During its runtime, a node is reserved
by the benchmark, causing additional overhead or costs to the system.

Finally, we observe that there is a trade-off to make. On the one hand,
adding the optimum node will increase the performance faster and eventu-
ally higher. On the other hand, the presented mechanisms either require
additional overhead, are inaccurate or are platform dependent.

6.2 Hill-climbing strategy improvements

As the evaluation has shown, there are potential optimizations to the hill-
climbing strategy described in section 4.2.

First, the accelerator feature behaved very aggressively when adding
nodes and too conservative when removing nodes. A possible improvement
is finding an β that performs better in the given scenarios. Moreover, the
calculation of the accelerator adaptation magnitude, as given in equation
4.2, assumes a homogeneous environment. A faster node however will have
a bigger impact on productivity than adding a relatively slow node. To
incorporate this heterogeneity it may be reasonable to take into account
the speed of an added node when assessing the improvement the adaptation
brought.

In general, the hill-climbing strategy relies on the productivity difference
before and after an adaptation took place. This may raise problems in cer-
tain scenarios, as the evaluation has shown. Having algorithms with dynamic
parallelization requirements, for example, force the strategy to compare cur-
rent statistics with outdated measures. This situation becomes problematic
when the strategy assesses a node removal as negative due to a decreasing
overall performance, whereas decreasing the number of nodes would be the
right option. A similar situation occurs with an increasing overall perfor-
mance, if the strategy keeps on adding nodes although it exceeds the ideal
number of active nodes already. These problems can possibly be handled by
introducing direction switches to the hill-climbing algorithm, although the
productivity is still increasing.

In addition, depending on the way parallel overhead emerges during a
computation, the measured productivity may not be stable. Figure 6.1 gives
an example of such a development that compares a normalized productivity
development with a productivity search space that undergoes oscillations.
This scenario appears in settings, where the parallel overhead is mainly influ-
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Figure 6.1: Inaccurate productivity development

enced by non-deterministic events, such as work steal requests, that cause a
high overhead. In this example, the more nodes participate in computation,
the higher are the fluctuations in the steal request behavior of the nodes,
causing non-stable productivity measures. A possible approach to overcome
this issue is taking into account other measures than the productivity. For
example, the total efficiency or the number of steal requests can also be
integrated into the decision making. The approaches mentioned above and
other strategy improvements will be the subject of future work.

6.3 Analyzing intra-cluster links

Parallel overhead is considerably higher in heterogeneous environments. Mul-
tiple clusters are, compared to a local cluster, most likely connected via
network links with higher latencies and a lower bandwidth. Analyzing the
intra-cluster links allows for better adaptation strategies that take into ac-
count communication characteristics.

A possible way of analyzing communication characteristics is measuring
the intra-cluster latencies and bandwidth capacities. It is possible, for ex-
ample, to measure how long it takes to contact other nodes, or to transfer
data to them. Based on this measurements, aggregated statistics can tell
performance data of each node and cluster. A possible drawback of this
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approach is the dynamics of the measurements. As an extreme example,
consider a) two clusters with 5 nodes each and b) two clusters having 1 and
9 nodes, respectively. The usual behavior of D&C systems requires nodes
to exchange tasks and results. Obviously, in a) both clusters have a high
chance of local communication, whereas in b) the single node cluster requires
only intra-cluster communication. In addition, the available bandwidth of
each cluster is most likely shared by all nodes. On the one hand, measuring
the network performance introduces some overhead. Yet, the analysis can
be integrated to self-adaptation strategies that consider this data for their
decision finding.

6.4 Machine learning techniques

All self-adaptation strategies that we discussed applied some heuristics to
find a well-performing set of computing nodes. Machine learning techniques
could be used to support the decision making. We will shortly summarize
possible approaches of machine learning techniques that may be suitable for
this task.

As we discussed in section 4.1, the possible combinations of node configu-
rations form a huge search space. A good approach of exploring such spaces
is Evolutionary Computing (EC). Similar to biology, in EC some individuals
evolve to a good and mature population. In the case of self-adaptation, this
could mean that a number of simultaneous runs with different configurations
are changed over time by adding and removing nodes or mixing (crossing)
them. EC is a good way of achieving a good, but not necessarily optimal,
solution. There exist even EC variants that can deal with dynamic environ-
ments, such as node loads or algorithm dynamics. Unfortunately, it requires
many evolution steps. This requirement brings lots of adaptation overhead
and multiplies the number of nodes used for a strategy. This makes EC
impracticable, when resources are limited.

Another machine learning technique is the k-nearest neighbors algorithm
(KNN). KNN classifies objects in a multidimensional future space. This
future space is based on history data, which in our case are represented
by previous configurations and their performances. Given the history data,
KNN classifies a future configuration by deriving information from the most
similar (historical) neighbors. Due to possible dynamics such as temporary
node loads, history data might be outdated over time. This should be taken
into consideration in a KNN network. A disadvantage of KNN is that a
considerable big set of history data (also called training data) is necessary
for sensible results. It is therefore not able to deal with initial algorithm
runs, and has its strengths after a longer overall parallel run time. Instead
of replacing the basic strategies, KNN can possibly be used in combination
with these.
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Chapter 7

Related work

Adaptation of parallel systems was explored since the 1990s and lots of
profound research has been done in this area. Our work distinguishes from
the work done before in that it focuses on a specific programming model
of parallel computing: divide and conquer applications. This chapter will
summarize important related work that has previously be done.

In 1989, Eager et al. [7] investigated how far Amdahl’s law should be re-
spected when searching for the fastest algorithm execution time. The article
describes that, given both a static algorithm behavior and comparable in-
put, performance bounds can be given. The authors included an interesting
discussion about trade-offs between speedup and efficiency that is inherent
to software systems. Our discussion about proper performance metrics, as
done in section 3.1, was motivated by this.

During the 1990s, research started to focus on measuring the perfor-
mance of parallel systems [14, 15, 24]. The work done by Miller et al. [14]
was a first approach to get insight to the execution behavior of distributed
applications. Miller et al. used operating system hooks to count system
procedures calls and recorded the performance data. Similarly, Reed et al.
[15] and Yan [24] developed modified C and Fortran parsers that instru-
ment source code to interactively measure execution times of code parts.
The outcome of all approaches, dynamic performance metrics, can partly be
used to dynamically adapt a parallel system. Self-adaptation however was
just mentioned as future work and was not further discussed in these works.
In addition to these approaches, the Globus Toolkit [8] was designed with
the long-term goal to enable applications to adapt to heterogeneous and
dynamically changing metacomputing environments. Although Foster and
Kesselman integrated resource discovery and resource selection mechanisms,
the actual self-adaptation was left for future work.

First approaches of real-time self-adaptive systems were discussed in 1997
by Ribler et al. [17]. Next to traditional approaches of measuring execution
times of code parts, the Autopilot framework uses sensor threads to period-
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ically monitor the application progress. It is up to the algorithm at hand
which data is measured to calculate performance metrics. An example was
given for I/O software, where offsets in files may be useful to indicate the
execution progress. Based on the sensor data, so called actuators can adapt
local variable values or call local functions of the parallel algorithm. Al-
though the described solutions are highly dependent on the given algorithm,
they describe the first real-time mechanism to adapt a parallel algorithm.
Similarly, Liu [12] developed a self-adaptive scheme for data allocation in
grid environments. Liu expands the hash algorithm commonly used for data
distribution such that the distribution takes heterogeneity into account.

Rencuzogullari et al. [16] later developed an approach focusing on net-
works of workstations (NOWs). Due to the highly heterogeneous environ-
ment they focus on mitigating load-imbalance. At compile time, Rencu-
zogullari et al. analyze the program to capture the access patterns of the
code and instrument the code with access information on critical program
parts, such as program loops. The statistical feedback is used to partition
the data according to the recorded patterns. Although this approach au-
tomatically adapts to any algorithm with distinctive patterns, it addresses
load imbalances only. The work does not cover any of the self-adaptation
scenarios that we described in section 1.3.

Instead of adapting the algorithm, Allen et al. [2] described resource
selection methods and developed the Cactus framework. One of the main
contribution of Allen et al. was the discussion on code migration, that is
inherent for any resource selection mechanism. In addition, resource dis-
covery mechanisms were developed that are a way to detect newly available
resources. The underlying performance metrics rely on measures of flops,
transfer rates or application specific data. So called contracts enforce the
program to stay in certain boundaries. A comprehensive discussion of these
policies and correlation between the performance metrics is not part of this
work.

Huedo et al. [9] present the GridWay framework based on Globus [8].
GridWay adapts grid schedules based on performance and ranking data
provided by an application. Huedo et al. require the programmer to enhance
applications to measure the performance of a given algorithm and to rank
machines that execute this algorithm. Another self-adaptive scheduler was
developed by Lawson and Smirni [11]. This scheduler uses history workload
data to predict future workload, but does not take into account algorithm
dynamics. Recently, Yu and Shi [25] also presented an adaptive rescheduling
strategy that incorporates history data to find the best execution schedule
on a grid. All three approaches mentioned in this paragraph make use of self-
adaptation techniques to find a good execution schedule. The approaches
rely on performance feedback either from the grid or from the executed
algorithms. Our work distinguishes from these approaches as it aims at
minimizing the runtime of a single job, instead of finding the best schedule
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for multiple jobs.
Vadhiyar and Dongarra [19] implemented a resource selection mechanism

that uses the Network Weather Service (NWS, [22]) to predict performance
data of nodes that participate in a parallel execution. Rescheduling algo-
rithms are able to migrate work away from nodes that might perform bad in
the future. Using mathematical models, the algorithms investigate whether
or not a change is worthwhile on long term. This approach works well in
environments where periodically changing performance data allows for re-
liable predictions. It is uncertain, however, if the NWS models accurate
information for any grid.

The NWS was used by other researchers as well. Dail et al. [4] devel-
oped a platform- and application-dependent environment. To initiate an
application-run, the user submits a machine list to the adaptation environ-
ment. A scheduler collects performance information (e.g. via the NWS)
of these machines. A so called mapper maps application data or tasks to
physical resources. Thus, the mapper provides an application specific per-
formance model that tries to find the best configuration by having inside
knowledge of the algorithm. For any algorithm, this performance model
needs to be developed separately. Dail et al. implemented specific algorithm
mappers to evaluate their approaches. Similarly, Kennedy et al. [10] added
a possibility to describe performance models of a specific parallel applica-
tion to the GrADS framework. Next to the manual information specified by
programmers, however, Kennedy et al. make also use of trial executions to
determine run times of important components, such as e.g. communication
costs.

In the recent years, the urgent need for self-adaptation in grids was dis-
covered. In 2004, Dini et al. [5] stated that self-adaptation mechanisms are
necessary because of two reasons; similar to our observations, Dini et al.
state that a) applications are multi-phased and thus dynamic and moreover
b) the grid infrastructure is heterogeneous and also dynamic. One year later,
an abstract scheme of self-adaptation was modeled by Aldinucci et al. [1],
generalizing previous efforts. Similarly, Buisson et al. [3] present a generic
framework that aims at optimizing an underlying application whenever its
execution environment changes. Both abstract discussions, however, do not
present actual implementations and evaluations. In 2009, self-adaptation
was once more highlighted as means to automatically manage to the grow-
ing number of available resources by Dongarra [6]. Dongarra underlines
that manual adaptation is too inefficient and automated mechanisms are
required.

Recently, a self-adaptation mechanism for divide and conquer applica-
tions was presented by Wrzesinska [23]. Our work was inspired by the de-
scribed mechanisms. As in our work, Wrzesinska describes a framework
that is independent from the parallel algorithm and instruments resource
selection as self-adaptation system. The approach of Wrzesinska however
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significantly differs from our framework. First, as discussed in section 3.2,
Wrzesinska bases self-adaptation strategies on performance metrics that can
fail in certain scenarios. A second significant difference with the work done
by Wrzesinska is the way of statistics gathering. The previous work made
use of additional performance measures by running smaller problem sizes,
thus introducing significant overhead to the parallel application. Our work
limits the overhead by using statistics that are present anyway, i.e. the fre-
quency at which tasks are computed. We further distinguish from the work
by using more advanced adaptation strategies to optimize system produc-
tivity, rather than merely adding nodes as long as the efficiency is in given
boundaries. Our work is moreover entirely independent from any specifi-
cation by the algorithm designer and can run in any divide and conquer
system.

As discussed in this chapter, measuring performance of parallel systems
and adding self-adaptation to them was extensively studied in the past.
This work contributes to this research by presenting a framework that a) is
independent from the algorithm used, b) does not require any specifications
by the application developer and c) is able to deal with common scenarios
that ask for self-adaptive systems. To the best of our knowledge, so far no
work has been done to extensively study self-adaptation strategies to find
well-performing resource configurations in divide and conquer systems.
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Chapter 8

Conclusion

Divide and conquer systems allow for measuring the performance of an al-
gorithm execution during runtime. In this work, we introduced the term of
productivity to measure this performance. We described a generic frame-
work that is capable of gathering productivity statistics from nodes that par-
ticipate in a distributed computation. The framework bases self-adaptation
strategies on this data to find a (close-to) ideal configuration of nodes, using
resource selection. We learned a few lessons during the development of the
framework:

• The definition of productivity allows for intermediate performance
measurements during an application run. This enables strategies to
use performance measurements as feedback for the adaptation process.

• Although efficiency is a good indicator of the node utilization [23], we
have shown that strategies aiming at maximizing the speedup may not
solely rely on this measure for decision making.

• Self-adaptation strategies need to take algorithm dynamics into ac-
count and should reassess node configurations, since previous mea-
surement results may be outdated.

• In certain scenarios with dynamic algorithms, both adding and remov-
ing a node can increase (or decrease, respectively) the overall perfor-
mance. In future work, we will examine if speculative direction changes
help the hill climbing algorithm to deal with these scenarios.

We integrated the framework into Satin and evaluated it against a range of
common self-adaptation scenarios. This evaluation has shown that our ap-
proach is a well-working self-adaptation scheme. The developed framework
is generic enough to be integrated into any parallel computing environment
implementing the divide and conquer paradigm.
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Summarizing, the basic achievements of our work are:

• The self-adaptation framework is able to quickly converge towards
a well-performing configuration. An evaluation has shown that the
framework can both deal with situations where too many or too few
nodes are active.

• Algorithms with dynamic parallelization requirements are particularly
supported by the developed self-adaptation strategies. In our evalua-
tion, given such dynamic algorithms, the strategies always outperform
an ideal static set of nodes.

• Nodes that have additional load, or entirely failed, are detected by our
framework and replaced by well-performing nodes.

• The overhead that was introduced by the framework is marginal. We
achieved this by using light-weight measurements and by our approach
to minimize the number of wrong adaptation decisions.

Any divide and conquer system can be enhanced by integrating our frame-
work. As long as the algorithm requirements of homogeneous and small leaf
tasks are met, similar performances can be expected.
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Appendix A

Satin example application

interface FibInterface extends ibis.satin.Spawnable {
public long fib(int n);

}

final class Fib extends SatinObject implements FibInterface {
public long fib(int n) {

if (n < 2) { return n; }

long x = fib(n - 1);
long y = fib(n - 2);

sync();
return x + y;

}

public static void main(String[] args) {
Fib f = new Fib();

long result = f.fib(10);
f.sync();

System.out.println("result fib (10) = " + result);
}

}

The code above shows an example Satin application, the calculation
of Fibonacci numbers. Note that this program is not an efficient way to
calculate Fibonacci numbers in parallel and is merely an educative example.
The interface FibInter represents the marker interface, and the method fib()
in class Fib implements it. After spawning two children per each task, the
invocations are synchronized to retrieve a final result.
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Appendix B

Correlation of
efficiency/productivity

If the total efficiency shall be kept within certain bounds, it is necessary
to know ways how to increase and decrease the efficiency. Usually, adding
nodes to computation increases the parallel overhead, and thus decreases
the overall efficiency. Similarly, reducing the set of worker nodes reduces
the parallel overhead and raises the efficiency. In addition, the productivity
is usually higher if more nodes contribute to the distributed computation.

There are however certain scenarios, where these rules of thumb do not
apply. Table B.1 on page 51 indicates four scenarios that show all possible
correlations between total efficiency and total productivity when adding a
node to computation. It shows if simultaneous increases and decreases in
productivity and efficiency are possible in both homogeneous and heteroge-
neous environments. As described in table B.1, the first three correlations
are possible. The fourth scenario, that after adding a node the efficiency
increases and the productivity decreases, is impossible.

Proof. Let a node with positive speed be added to the system. Thus the
total speed increases, i.e.:

total speedold < total speednew (B.1)

Following the scenario, the total efficiency of the system increases:

total efficiencyold < total efficiencynew (B.2)

From observations B.1 and B.2, as well as equation 3.5 follows that:

total speedold ∗ total efficiencyold < total speednew ∗ total efficiencynew

⇔
total productivityold < total productivitynew

50



eff. prod. real? reason
- + yes Adding a node to computation usually raises the pro-

ductivity, but an increased load balance overhead low-
ers the efficiency.

- - yes In certain situations, the parallelization achieved by a
set of nodes is supersaturated. Again, adding a node
decreases the efficiency. If the introduced overhead is
too high compared to the benefit of an extra node,
the productivity decreases.

+ + yes In some situations, e.g. where positive cache effects or
pruning benefits can be observed, adding nodes to the
computation increases the efficiency. Parallel applica-
tions showing super linear speedup are an example of
this scenario.

+ - no Adding a node always increases the global speed of
the currently active nodes. If efficiency increases at
the same time, then the productivity must necessarily
also grow.

Table B.1: Possible productivity and efficiency correlations when adding
nodes to the computation
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Appendix C

Framework implementation
description

This appendix describes details of the framework implementation. In partic-
ular, implementations of the self-adaptation server, client and environment
adapter are described.

Figure C.1 gives a UML representation of the most important com-
ponents of the self-adaptation server implementation. The main work is
done by a singleton object of the class GeneralSACollector. This instance
is responsible for storing collected statistics and information about active
worker nodes. The statistics collector was modeled such that it can run in
any parallel environment. To communicate with the parallel environment,
the collector keeps a reference to an SAEnvironmentAdapter instance, that
is responsible for communication with a specific parallel environment via
SmartSockets [13].

All remaining three classes are responsible to keep track of self-adaptation
clients. An object of SAServer spawns the SAServerAcceptThread, which
in turn accepts client connections and hands them off to SAServerThread
instances. Such an instance is in charge of reacting to commands issued by
a client, such as statistic requests or node configuration modifications. Once
the server was started, the user can also use the standard input interface to
issue regular client commands.

The self-adaptation client implementation is structured as illustrated by
the UML diagram in figure C.2. A singleton instance of SAClient is re-
sponsible for querying statistics from the server via the API. Any collected
statistics is handed over to an instance of StatsCollecter, which administrates
a complete history of Statistic instances. Each such instance represents the
statistical data of a single measurement interval and has a list of nodes with
associated performance metrics. After querying new statistics, the SAClient
instance asks a specific implementation of the abstract class SAStrategy for
self-adaptation steps. The class MaximizeSpeedup is a concrete implemen-
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+getAggregatedStatistics(in int offset)

+getStatus()

+getStatistics(in int offset)

-HashSet<Integer> workers

-LinkedList<SAStatistics> statsHistory

GeneralSACollector

+run()

-VirtualServerSocket vss

SAServerAcceptThread

+processRequest(in String request)

-BufferReader input

-PrintWriter output

SAServerThread

+startAcceptThread()

+run()

-String hubAddress

SAServer

-server1

1

+envAdapter

1 1

-acceptThread1

1

-connectionThreads

1 *

+resumeWorker(in int workerId)

+pauseWorker(in int workerId)

+collectStatistics()

«interface»

SAEnvironmentAdapter

Figure C.1: UML graph of the statistics collector process

tation of the strategy and comprises all strategies that we discussed before.
A current state of the network is always kept in a Network singleton. The

strategies implemented by the client will change this singleton if adaptation
is required. The network singleton object follows a publish-subscribe mech-
anism. With every adaptation, all registered instances of the type Network-
Listener are notified about the change. In our implementation, an instance
of SAClientConnection subscribed for changes and forwards every modifi-
cation as adaptation command to the self-adaptation server. The server, in
turn, will process the requests and change the current node configuration in
the parallel environment accordingly.

Figure C.3 illustrates the structure of a reference implementation of an
environment adapter that we integrated into Satin. By definition, an envi-
ronment adapter needs to implement the SAEnvironmentAdapter interface.
This interface allows the collector to communicate with the parallel environ-
ment and stay general, such that no source modification is required when
integrating the framework to a specific parallel environment. The adapter,
in turn, needs a reference to the GeneralSACollector in order to forward
statistic replies and update the collector with current node configuration
information.
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+eventNodeActivated(in Node n)

-BufferedReader input

-PrintWriter output

-VirtualSocket connection

SAClientConnection

+LinkedList<Cluster> getClusters()

+setNodeActive(in Node n, in boolean isActive)

-LinkedList<Cluster> clusters

Network -listeners

1 *

+prepareDecision()

+getAddNodes()

+getRemoveNodes()

#getBlockProductivity(in int blockOffset)

-Statistics currentStats

-int currentBlock

-HashSet<Node> nodesToRemove

-HashSet<Node> nodesToAdd

SAStrategy

+eventNodeActivated(in Node n)

«interface»

NetworkListener

+prepareDecision()

-processHillclimbing()

-processOutliers()

-processFailures()

-int hcDirection

-int hcMaxProductivity

-int hcLastAdaptationStepSize

MaximizeSpeedup

-strategy

1

1

+main()

SAClient
-net

1

1

+LinkedList<Statistics> getStatistics()

+archiveStatistics(in Statistics stats)

StatsCollector

+totalProductivity

+LinkedList<Node> nodes

Statistics-allStats

1 *

Figure C.2: UML graph of the self-adaptation client
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+resumeWorker(in int workerId)

+pauseWorker(in int workerId)

+collectStatistics()

«interface»

SAEnvironmentAdapter

+joined(in IbisIdentifier joiner)

+left(in IbisIdentifier joiner)

«interface»

RegistryEventHandler

+upcall(in ReadMessagemsg)

«interface»MessageUpcall

-ReceivePort receivePort

-LinkedList<SendPort> sendPorts

-Ibis saIbis

SAEnvironmentAdapterImpl

+getAggregatedStatistics(in int offset)

+getStatus()

+getStatistics(in int offset)

+addWorker(in int id)

+removeWorker(in int id)

+addStatistics(in SAStatistics stats)

-HashSet<Integer> workers

-LinkedList<SAStatistics> statsHistory

GeneralSACollector

-envAdapter 1
-genCollector1

+main(in String args[])

SAConcreteServer

-coll1

Figure C.3: UML graph of the environment adapter reference implementa-
tion
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Appendix D

Client-server communication
API

The server offers self-adaptation clients an interface to retrieve the collected
statistics as well as issue adaptation commands via a well-defined API. Ta-
ble D.1 gives an overview of the API that is used in our self-adaptation
framework. The first three entries enable the client to retrieve collected
statistics, or get a list of (in)active worker nodes. The remaining four com-
mands can be used to control the set of running nodes and perform the
actual adaptation.

command description
STATS ALL offset return a list of statistics per interval and per node
STATUS return a list of connected worker nodes
ACTIVE return a list of connected and active worker nodes
PAUSE NODE nodeId pause computation of worker node
RESUME NODE nodeId resume computation of worker node
ADD NODE add new worker node to computation
REMOVE NODE nodeId remove worker node entirely from computation

Table D.1: API definition for communication between SA server and client
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