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Abstract

Despite numerous attempts to mitigate code-reuse at-
tacks, Return-Oriented Programming (ROP) is still at
the core of exploiting memory corruption vulnerabili-
ties. Most notably, in JIT-ROP, an attacker dynamically
searches for suitable gadgets in executable code pages,
even if they have been randomized. JIT-ROP seemingly
requires that (i) code is readable (to find gadgets at run
time) and (ii) executable (to mount the overall attack). As
a response, Execute-no-Read (XnR) schemes have been
proposed to revoke the read privilege of code, such that
an adversary can no longer inspect the code after fine-
grained code randomizations have been applied.

We revisit these “inherent” requirements for mounting
JIT-ROP attacks. We show that JIT-ROP attacks can be
mounted without ever reading any code fragments, but
instead by injecting predictable gadgets via a JIT com-
piler by carefully triggering useful displacement values
in control flow instructions. We show that defenses de-
ployed in all major browsers (Chrome, MS IE, Firefox)
do not protect against such gadgets, nor do the current
XnR implementations protect against code injection at-
tacks. To extend XnR’s guarantees against JIT-compiled
gadgets, we propose a defense that replaces potentially
dangerous direct control flow instructions with indirect
ones at an overall performance overhead of less than 2%
and a code-size overhead of 26% on average.

1 Introduction

Code-reuse attacks, such as Return-Oriented Program-
ming (ROP), enable an attacker to bypass Execute-XOR-
Write (XˆW) policies by suitably chaining existing small
code fragments (so-called gadgets). One of the most
prominently explored concepts to defend against such at-
tacks involves randomizing programs so that an attacker
can no longer reliably identify and chain such gadgets,
whether by code transformations [19, 6, 14], data region

hardening [5, 23], or whole address space randomiza-
tion [4]. However, a novel class of attacks, dubbed JIT-
ROP, allows for code reuse even for such diversified pro-
grams [31]. JIT-ROP leverages a memory disclosure vul-
nerability in combination with a scripting environment—
which is part of all modern browsers—to read existing
code parts, notably after they were randomized. Once
the code has been read (e.g., using a memory disclosure
vulnerability), an attacker can dynamically discover and
chain gadgets for conventional code-reuse attacks.

Mounting a successful JIT-ROP attack seemingly re-
quires the ability to (i) read code fragments and iden-
tify suitable gadgets (otherwise the adversary would not
know what to combine) and to (ii) execute them (so that
the overall attack can be mounted). The recently pro-
posed Execute-no-Read (XnR) schemes [2, 11, 12] con-
sequently strive to eliminate JIT-ROP attacks by ensur-
ing that executable code is non-readable, i.e., marking
code sections as executable-only while explicitly remov-
ing the read privilege. Hence an adversary can no longer
inspect the code after fine-grained code randomization
techniques have been applied and should thus fail to
identify suitable gadgets. As a more pointed statement:
what cannot be read, cannot be leveraged.

Our contributions: In this paper, we carefully re-
visit these seemingly inherent requirements for mounting
a successful JIT-ROP attack. As our overall result, we
show that JIT-ROP attacks can often be mounted without
ever reading any code fragments, but by instead inject-
ing arbitrary, predictable gadgets via a JIT compiler and
by subsequently assembling them to suitable ROP chains
without reading any code pages.

As a starting point, we show how to obtain expressive
unaligned gadgets by encoding specially-crafted con-
stants in instructions. Prior research has already shown
that explicit constants in JavaScript statements, e.g., in
assignment statements like x = 0x12345678, can be used
to generate unaligned gadgets [1]. Browsers started to
fix such vulnerabilities, e.g., by blinding explicit con-



stants (i.e., XOR-ing them with a secret key), and/or
by applying fine-grained code randomization techniques
(cf. Athanasakis et al. [1]). We show that implicit con-
stants in JIT-compiled code can be exploited in a sim-
ilar manner, and are hence far more dangerous in the
JIT-ROP setting than commonly believed. To this end,
we generate JavaScript code that emits specific offsets in
relative jumps/calls in the JIT-compiled code. We show
that both relative jumps and relative calls can be used
to encode attacker-controllable values in an instruction’s
displacement field. These values can later be used as un-
aligned gadgets, i.e., an attacker that controls the jump
or call destination (or source) can predict the displace-
ment and thereby generate deterministic gadgets on-the-
fly, without the need to ever read them before use. We
demonstrate the impact of our attack by injecting almost
arbitrary two- or three-byte-wide gadgets, which enable
an attacker to perform arbitrary system calls, or, more
generally, obtain a Turing-complete instruction set. We
show that all major browsers (Chrome, Internet Explorer,
Firefox) are susceptible to this attack, even if code ran-
domization schemes such as NOP insertion (like in Inter-
net Explorer) are in place.

The ability to create controllable JIT-compiled code
enables an adversary to conveniently assemble ROP
chains without the requirement to ever read code. This
challenges current XnR instantiations in that code does
not have to be readable to be useful for ROP chains,
highlighting the need to complement XnR with effective
code pointer hiding and/or code randomization schemes
also in JIT-compiled code. Unless XnR implementa-
tions additionally protect JIT-compiled code, they do
not prevent attackers from reusing predictable attacker-
generated gadgets, and hence from mounting JIT-ROP
attacks. We stress that a complete XnR implementa-
tion that offered holistic code coverage (i.e., hiding code-
pointers also in JIT-compiled code) may also be effective
against our attack. However, maintaining XnR’s guaran-
tees also for JIT-compiled and attacker-controlled code
imposes additional challenges in practical settings: First,
fine-grained code randomization schemes that are imple-
mented in XnR do not add security against implicit con-
stants, and they hence make gadget emissions, proposed
in this paper, possible. In particular, the widely deployed
concepts of register renaming and instruction reordering
do not affect our proposed unaligned gadgets. More-
over, fine-grained code randomization techniques com-
monly deployed in browsers (as NOP insertion in IE) are
not sufficient either, as the attacker can test the validity
of its gadgets before using them. Second, the lack of
code pointer hiding in JIT-compiled code in current XnR
instantiations constitutes an additional vector of attack,
since adversaries can then still leverage our attack to en-
code constants in relative calls.

We finally explored how to extend XnR’s guarantees
against implicit constants in JIT-compiled code. One op-
tion would be to extend the use of call trampolines in
XnR schemes also to JIT compilers, as suggested by
Crane el al. [11, 12]. However, this will replace exist-
ing direct calls with direct jumps to trampolines, which
also encode implicit constants. Furthermore, trampolines
will introduce new relative offsets in their direct call in-
structions. As the locations of trampolines are not hid-
den (e.g., they can be revealed by reading the return ad-
dress on stack), in the presence of an unprotected code
pointer, the attacker will be able to predict encoded con-
stants by leaking either the caller or the callee address.
As an orthogonal alternative, in this paper we propose
to (i) replace relative addressing with indirect calls and
(ii) blind (i.e., reliably obfuscate) all explicit constants
used to prepare the indirect calls. We implement our de-
fense in V8, the JavaScript engine of Chrome, and show
that our proposal imposes less than 2% performance and
26% code size overhead, while effectively preventing the
attacks described in this paper.

The summarized contributions of our paper are:

• We present a novel class of attacks that encode ROP
gadgets in implicit constants of JIT-compiled code.
We thereby show that reading code fragments is
not necessarily a prerequisite for assembling useful
gadgets in order to mount a JIT-ROP attack.

• We demonstrate that all three major browsers
(Chrome, Internet Explorer, Firefox) are suscepti-
ble to our proposed attack.

• We discuss potential shortcomings when using XnR
to protect JIT-compiled code. We show that the un-
derlying assumptions that XnR schemes build upon
(such as code randomization) have to be carefully
evaluated in the presence of JIT-compiled code.

• We implement a defense in V8 that replaces rela-
tive calls/jumps with indirect control flow instruc-
tions. This effectively prevents the attack proposed
in this paper by removing dangerous implicit con-
stants, exhibiting a performance overhead of 2%
and a code size overhead of 26%.

The remainder of this paper is structured as follows.
Section 2 provides background information on code-
reuse attacks. Section 3 describes our threat model. Sec-
tion 4 introduces the fundamentals of our attack and
demonstrates its efficacy against three major browsers.
Section 5 introduces an efficient defense against our at-
tack. Section 6 discusses the implications of our work.
Section 7 describes related work and Section 8 concludes
the paper with a summary of our findings.
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2 Background

We will use this section to provide background informa-
tion on code-reuse attacks. We start by explaining ROP,
and then provide insights on JIT-ROP, which collects
code on-the-fly and thus evades existing randomization
schemes like ASLR. Finally, we describe Execute-no-
Read (XnR), a new defensive scheme that aims to protect
against code-reuse attacks (including JIT-ROP).

2.1 Return Oriented Programming (ROP)

ROP has emerged since the wide deployment of Data Ex-
ecution Prevention (DEP), which is a defense technique
against regular stack overflow vulnerabilities. DEP, mak-
ing the writable regions of the memory non-executable,
forbids the attacker to execute the shellcode directly on
the stack. As a response, attackers switched to code-
reuse attacks, in which they execute existing code instead
of injecting new code. ROP, proposed by Shacham [29],
is a generalized version of the ret-to-libc attack [22],
which redirects the control flow of the program to exist-
ing code, such as the program’s code or imported func-
tions (e.g., in libc). In ROP, an attacker uses short in-
struction sequences (called gadgets) ending with a con-
trol flow instruction (e.g., ret). Return instructions are
used to chain multiple gadgets together by providing
their addresses as the return values on the stack. Check-
oway et al. [8] showed that it is possible to launch ROP
attacks without using return instructions, i.e., via lever-
aging other control flow changing instructions such as
indirect jumps or calls.

Code-reuse remains a popular attack technique and
has triggered a variety of defensive schemes. Most
prominent, and deployed in most operating systems, is
Address Space Layout Randomization (ASLR). ASLR
randomizes the base addresses of memory segments and
prevents an attacker from predicting the addresses of
gadgets. Although ASLR is effective for pre-computed
gadget chains, ASLR has known shortcomings in that
it only randomizes base addresses and is too coarse-
grained. An attacker can thus reveal the memory lay-
out of an entire ASLR-protected segment with a single
leaked pointer. To address this problem, fine-grained
ASLR randomization schemes have been proposed that
add randomness inside the segment [16, 20, 25] (we re-
fer the reader to Larsen’s survey [21]).

2.2 JIT-ROP

To counter ASLR, Snow et al. proposed a new attack
technique, called just-in-time code reuse (JIT-ROP) [31].
By leveraging the fact that an adversary is able to read
randomized code sections, JIT-ROP undermines fine-

grained ASLR schemes. JIT-ROP is based on the follow-
ing assumptions: (i) a memory disclosure vulnerability,
allowing the attacker to read data at arbitrary locations,
(ii) at least one control flow vulnerability, (iii) a scripting
environment running code provided by the attacker. The
basic idea of the JIT-ROP is the following:

(J1) Repeatedly using the memory disclosure vulnera-
bility, the attacker follows the code pointers in the
memory to read as many code pages as possible.

(J2) From the read code pages, JIT-ROP extracts gad-
gets (e.g, Load, Store, Jump, Move) and col-
lects useful API function calls (e.g., LoadLibrary,
GetProcAddress).

(J3) Given the gadgets and API functions, the JIT-ROP
framework takes an exploit, written in a high-level
language, as an input and compiles it to a chain of
gadgets and function calls that perform a code-reuse
attack.

(J4) Finally, the control flow vulnerability is used to
jump to the beginning of the compiled gadget chain.

JIT-ROP demonstrates that an adversary may be able
to run code-reuse attacks even in the case of fine-grained
ASLR or code randomization, as she can read the code
and function pointers after they have been randomized.

2.3 Execute-no-Read (XnR)
In an attempt to close the security weakness that JIT-ROP
has demonstrated, researchers suggest marking code sec-
tions as non-readable. Such Execute-no-Read (XnR)
schemes were proposed by Backes et al. [2], and were
strengthened by Crane et al. [11, 12] shortly thereafter.
The common goal is to prevent step (J1) of the JIT-ROP
attack, as the attacker can no longer dynamically search
for gadgets in non-readable code sections.

XnR: Lacking support for XnR pages in the current
hardware, Backes et al. implemented XnR in software by
marking code pages as non-present and checking the
permissions inside a custom pagefault handler [2]. To in-
crease the efficiency of this scheme, the authors propose
to leave a window of N pages present. This exposes a
few readable pages to the attacker, but prevents her from
reading arbitrary code pages. As the authors suggest, at
low window size (N = 3), the likelihood that an attacker
can leverage code-reuse attacks using only the present
code pages is negligible.

Readactor(++): Crane et al. suggested Readactor [11]
and Readactor++ [12], both of which leverage hardware
support to realize XnR. The authors suggest using Ex-
tended Page Tables (EPT), which were introduced re-
cently to the hardware to assist virtualized environments.
While regular page tables translate virtual addresses into
physical ones, EPTs add another layer of indirection
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and translate physical addresses of a VM to physical
addresses of the host. EPTs allow marking pages as
(non-)readable, (non-)writable, or (non-)executable, al-
lowing enforcement of XnR in hardware. In addition,
Readactor(++) hides code pointers by creating trampo-
lines, and replacing all code pointers in readable mem-
ory with trampoline pointers. The underlying assump-
tion of Readactor(++) is that fine-grained code diversifi-
cation techniques are in place, such as function permuta-
tion, register allocation randomization, and callee-saved
register save slot reordering.

Despite the fact that Readactor hid code pointers, the
layout of some function tables (e.g., import tables or vta-
bles) stayed the same. This allows an adversary to guess
and reuse the function pointers from these tables [27].
Readactor++ fixed this issue by randomizing these ta-
bles (to get rid of the predictable layout) and randomly
injecting pointers to illegal code (to forbid function fin-
gerprinting by executing it).

Alternative XnR Designs: Gionta et al. [15] proposed
HideM, which, using a split TLB technology, differenti-
ates between memory accesses and only allows instruc-
tion fetches to access code pages. Further, HideM con-
siders the data in the executable memory pages that need
to be read and uses read policies to guarantee their se-
curity. However, although HideM might be used to en-
force non-readable code, it highly depends on the hard-
ware support (e.g., split TLB). Furthermore, HideM does
not hide code pointers. In addition, Pereira et al. [26]
designed a technique similar to Readactor(++) that aims
to get non-readable code for mobile devices in ARM.
One of the advantages of their approach, called Leakage-
Resilient Layout Randomization (LR2), is that it is im-
plemented in software and does not require the under-
lying hardware support. LR2 achieves this by splitting
the memory space in half (into code and data pages) and
instrumenting load instructions to forbid the attacker to
read code. LR2 also optimizes the use of trampolines by
creating only a single trampoline for each callee instead
of encoding one for each callee-caller pair.

Summarizing XnR: Even though the current XnR im-
plementations mark JIT-compiled code as non-readable,
existing prototypes allow to leak JIT code pointers via
JIT-compiled code. We will show that an adversary that
controls the JavaScript code can still run code-reuse at-
tacks on the code generated by the JIT compilers.

2.4 JIT-Compiled Gadgets

JIT compilation remains a major challenge for XnR im-
plementations. During JIT compilation, the JIT engine
(e.g., of a browser) compiles JavaScript code into assem-
bly instructions to optimize performance. This is done
by converting each JavaScript statement into a sequence

of corresponding assembly instructions, making the code
output of the JIT compiler predictable. The deterministic
JIT compilation allows an attacker to influence the code
output by controlling the JavaScript code. For example,
Blazakis [7] and Athanasakis et al. [1] propose to craft
special JavaScript statements that JIT-compile into gad-
gets. Consider a statement with an immediate value, such
as the assignment var a=0x90909090. The JIT engine
will compile this into a sequence of assembly instruc-
tions, one of them being a mov eax,0x90909090 instruc-
tion that encodes the attacker-chosen immediate value.
After the compilation, the attacker can jump in the mid-
dle of the instruction and use the bytes of the immediate
value as an unaligned gadget, such as four consecutive
nop instructions in our simple example.

JIT Compiler Defenses: Modern JavaScript compil-
ers prevent such unaligned gadgets by constant blind-
ing. Instead of directly emitting constants in native code,
compilers XOR them with randomly generated keys, mak-
ing the resulting constants unpredictable. After constant
blinding, the aforementioned JavaScript statement will
be compiled to the following assembly instructions, ef-
fectively removing the attacker-controlled constant:

mov eax, (0x90909090 ⊕ KEY)

xor eax, KEY

For performance reasons, modern browsers only blind
large constants. For example, Chrome and IE blind
constants containing three or more bytes, giving the
attacker a chance to emit arbitrary two-byte gadgets.
Athanasakis et al. [1] demonstrated that two-byte gad-
gets are sufficient to mount a successful ROP attack, pro-
vided that (i) code sections are readable, and (ii) avail-
able gadgets happen to be followed by a ret instruction.

While constant blinding protects against such gadget
emissions, as we will show, it does not protect against our
novel form of JIT-compiled implicit constant gadgets.

3 Assumptions

We now describe our assumptions that we follow
throughout this paper, detailing a threat model and dis-
cussing defenses that we assume are in place on the tar-
get system. These assumptions are in accordance with
the recently proposed defense mechanisms against JIT-
ROP, such as XnR [2] and Readactor [11].

3.1 Defense Techniques
We assume that the following defense mechanisms of the
operating systems and the target application are in place:

• Non-Executable Data: Data Execution Policy
(DEP) is enabled on the target system, e.g., by us-
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ing the NX-bit support of the hardware, marking
writable memory pages non-executable.
• Address Space Layout Randomization: The tar-

get system deploys base address randomization
techniques such as ASLR, i.e., the attacker cannot
predict the location of a page without a memory dis-
closure vulnerability. In addition, we assume popu-
lar fine-grained ASLR schemes [20, 33, 16, 25, 17],
as suggested by current XnR implementations [11,
12], are applied on the executable, libraries, and JIT-
compiled code.
• Non-Readable Code: We assume that all code

segments are non-readable, with this being either
software- [2] or hardware-enforced [11, 12], no-
tably also assuming that JIT-compiled code is non-
readable.
• Hidden Code Pointers: We assume that all code

pointers, except for JIT-compiled ones, are present
but anonymized, e.g., via pointer indirections such
as trampolines proposed by Readactor. Note that, as
mentioned by Crane et al., Readactor(++) could be
extended to also hide code pointers in JIT-compiled
code. However, there is no implementation that
shows this, neither is the performance impact of
such a scheme clear. In addition, having the com-
piler running in the same process as the attacker
might give the adversary the ability to read code
pointers during the compilation process. We thus
believe that hiding all possible (direct or indirect)
code pointers is a challenging task and the attacker
might still be able to leak the required function ad-
dresses.
• JIT Hardening: We assume modern JIT defenses

such as randomized JIT pages, constant blinding,
and guard pages (i.e., putting an unmapped page be-
tween mapped ones). In our attack, for simplicity,
we assume that sandboxing is either disabled or can
be bypassed via additional vulnerabilities. In ad-
dition, assessing the security of Control Flow In-
tegrity (CFI) defenses in JIT compilers is out of
scope of this paper, as our core contribution is to
show that an attacker can inject gadgets, and not
to discuss the actual process of diverting control
flow. Instead, we demonstrate the threat of attacker-
controlled code emitted by the JIT compiler.

3.2 Threat Model

In the following, we enumerate our assumptions about
the attacker. This model is consistent with the threat
model of previous attacks such as JIT-ROP [31] and with
the XnR-based defense schemes.

• Memory Disclosure Vulnerability: We assume
that the target program has a memory disclosure
vulnerability, which can be exploited repeatedly by
the attacker to disclose the readable memory space
(i.e., we can read data, but cannot read code).
• Control-Flow Diversion: We assume that the target

program has a control-flow vulnerability, allowing
the attacker to divert the control flow to an arbitrary
location. Note that this by itself does not allow the
attacker to exploit the program, given the lack of
ROP gadgets due to fine-grained ASLR and XnR.
• JavaScript Environment: We assume that the vul-

nerable process has a scripting environment sup-
porting JIT compilation, for which the attacker can
generate arbitrary JavaScript code. This is common
for victims that use a browser to visit an attacker-
controlled web site. Similarly, it applies to other
programs such as PDF readers.

4 JIT-Compiled Displacement Gadgets

In this section, we discuss how an attacker can induce
new JIT-compiled gadgets by crafting special JavaScript
code. Intuitively, we show that an attacker can generate
predictable JIT-compiled code such that she can reuse
the code without searching for it. We introduce new
techniques to trigger predictable gadgets that all mod-
ern JavaScript engines happen to generate. We demon-
strate that an attacker can create and use almost arbi-
trary x86/x64 gadgets in modern browsers and their cor-
responding JavaScript engines, such as Google Chrome
(V8), MS Internet Explorer (Chakra), and Mozilla Fire-
fox (SpiderMonkey).

We introduce two techniques to emit gadgets via im-
plicit constants. First, in Section 4.1, we leverage
JavaScript’s control flow instructions and emit condi-
tional jumps (such as je 0x123456) that may encode
dangerous offsets. Second, in Section 4.3, we show how
an attacker can leverage offsets in direct calls, such as
call 0x123456, to create gadgets.

4.1 Conditional Jump Gadgets
Our first target is to turn offsets encoded in conditional
jumps (in JIT-compiled code) into gadgets. To this
end, we use JavaScript statements, such as condition-
als (if/else) or loops (for/while), that are compiled
to conditional jumps. Figure 1(A) shows an example.
In js gadget, the body of the if statement contains a
variable-length JavaScript code. After compilation, the
if statement is converted to a sequence of assembly in-
structions containing a conditional jump, which, depend-
ing on the branch condition, either jumps over the body
or falls through (e.g., je <if body size>). By varying

5



function js_gadget(arg){

  if (arg)
  {

    /* More JS Code */

  }
  return;
}

test eax, eax

... ;asm code

ret

je   0x

(A) JavaScript function (B) Disassembly

<epilogue>

c380cd

Figure 1: JavaScript function js gadget and its corre-
sponding disassembly

the code size inside the if body, we change the jump
distance and thus the value encoded in the displacement
field of the jump instruction in the compiled code. For
example, if we aim for a int 0x80;ret (0xcd80c3) gad-
get, we have to fill the body of the if statement with
JavaScript code that is compiled to 0xc380cd bytes. The
size of the JIT-compiled code for each JavaScript state-
ment is fixed by the corresponding JIT compiler, and thus
an attacker can precisely generate code of any arbitrary
length. Note that the bytes of the size and the emitted
gadget are mirrored because of the little-endian format
used in x86/x64 architectures. The compiled version of
js gadget is shown in Figure 1(B).

Emitting such three-byte gadgets requires large por-
tions of JavaScript code. In case the malicious JavaScript
code has to be loaded via the Internet, this might drasti-
cally increase the time required for all gadgets to be in
place. An attacker could overcome this limitation by uti-
lizing the eval function. Instead of having ready-made
JavaScript code, we thus use a function that constructs
and emits all required gadgets on-the-fly. Such a script
to dynamically generate arbitrary gadgets occupies less
than one kilobyte.

In a naı̈ve attack instantiation, each additional gadget
will increase the overall code size. To counter this poten-
tial limitation, we can also embed smaller gadgets into
the bigger ones by stacking if statements inside the body
of another if statement, ideally reducing the size of the
JavaScript code to the size of the biggest gadget.
Computing addresses of JavaScript functions: In or-
der to use generated gadgets, we have to compute their
addresses. We start by revealing the address of the JIT-
compiled JavaScript function, which contains emitted
gadgets, by employing a memory disclosure vulnerabil-
ity. We can do this, for example, by passing the func-
tion as a parameter to another one, thus pushing its value
on the stack. Afterwards, in the callee, we read the
stack, revealing the pointer to the function’s JavaScript
object, which contains the code pointer to the actual (JIT-
compiled) function. Note that here we assume that we
know the location of the stack. This can be done by
chasing the data pointers in the readable memory, until
we find a pointer pointing to the stack.

Because of the predictable code output of JIT compil-

ers, we know the offsets inside the JIT-compiled func-
tion, at which conditional jumps will be emitted and can
thus compute the addresses of emitted gadgets.

4.2 Conditional Jump Gadgets in Browsers

We tested this technique against three modern browsers:
Chrome 33 (32-bit)/Chrome 51(64-bit), Firefox 42 (64-
bit) and IE 11 (64-bit with 32-bit JavaScript engine).
There are some differences that need to be taken into
account for each of them. For example, Chrome com-
piles JavaScript functions the first time they are called,
while Firefox and IE interpret them a few times until
they are called too often (e.g., around 50 times for IE
and 10 times for Firefox) and only then JIT-compile the
JavaScript code. Therefore, to trigger the compilation we
just call the function multiple times and then wait until it
is compiled (which takes a few milliseconds).
Chrome: As each browser has its own JIT compiler, an
attacker has to vary the JavaScript code to fill the exact
number of bytes in the if body. This is just a matter of
finding a mapping between JavaScript statements and the
number of bytes of their JIT-compiled equivalent. We
will demonstrate this by emitting a system call gadget
(int 0x80;ret) in 32-bit Chrome. To this end, we need
to emit 0xcd80c3, i.e., we need to fill the if body with
JavaScript code that is JIT-compiled to 0xc380cd bytes.
We use the following two JavaScript statements:
S1: v=v1+v2, compiling to 0x10 bytes, and
S2: v=0x01010101, compiling to 0xd bytes.
By combining these two statements, we can generate ar-
bitrary gadgets. In our case, we use S1 0x0c 38 0c times
(resulting in 0xc3 80 c0 bytes) and S2 once—summing
up to 0xc3 80 cd, our desired gadget.

Note that the JavaScript statement that compiles to
0x10 bytes allows us to control each hex digit of the emit-
ted jump distance except the last one (i.e., the least sig-
nificant half-byte of the gadgets’ first byte). Moreover,
any JavaScript statement that compiles to an odd number
of bytes allows us to control the least significant half-
byte of the distance. Combining these two properties,
we can generate any gadget by using these two selected
JavaScript statements multiple times.

The sizes of JIT-compiled JavaScript statements differ
in 64- and 32-bit versions of Chrome. In 64-bit Chrome
we replace S1 with v=v, which is compiled to 0x10 bytes.
Note, however, that even though the size of S2 in 64-bit
is also changed to 0x1b bytes, we can still use it because
it is compiled to an odd number of bytes.
Firefox: To generate arbitrary gadgets for Firefox, we
choose the following two statements:
S1: v=v, compiled to 8 bytes (two of them to 0x10), and
S2: v+=0x1, compiled to 0x21 bytes.

6



0x0000: call FUN_1 ; 0xe8fb1f0000

0x0005: call FUN_1 ; 0xe8f61f0000

0x000a: ...

0x2000: push ebp ; 0x5d(@FUN_1)

Figure 2: Direct call

IE: IE deploys JIT-hardening mechanisms that go be-
yond the protections in Chrome and Firefox. IE (i) has
a size limit on code segments generated by the JIT com-
piler, and (ii) randomly inserts NOPs (i.e., instructions
that do not change the program state) in JIT-compiled
code. Because of (i), we can only emit two-byte gadgets.
Due to (ii), these gadgets are then further modified by in-
serting NOPs inside the if body and, thus, changing the
value emitted in the conditional jump. The latter tech-
nique is similar to librando [17]. Nevertheless, even with
these defenses in place, we can still emit arbitrary two-
byte gadgets by measuring the size of the emitted code
at run time. We will describe this attack in Section 4.4 in
the discussion about Internet Explorer.

4.3 Direct Call Gadgets

We found that conditional jumps are not the only in-
structions to embed implicit constants that can be in-
directly controlled by the attacker. Direct calls (e.g.,
call 0x1234560) are another example of such instruc-
tions. In our second approach, we leverage the JavaScript
statements that are compiled to instructions containing
direct calls.
Direct call constants: Direct calls in x86/x64 change the
execution flow of the program by modifying the instruc-
tion pointer (eip/rip). The constant encoded in a direct
call instruction represents a relative address of the callee.
That is, the call instruction’s displacement field contains
the distance between the addresses of the instruction fol-
lowing the call and the callee. Therefore, any two di-
rect call instructions to the same function will encode
different constants. For example, in Figure 2, there are
two consecutive calls to the function FUN 1 (at address
0x2000). The constant encoded in the first call denotes
the distance between FUN 1 and the instruction following
the call (i.e., the second call at 0x05). Therefore, its value
is 0x2000-0x5=0x1ffb, which is 0xfb1f0000 encoded in
little-endian.

In the example above, the difference between two con-
secutive direct call constants is 0x5 (the size of a direct
call instruction). In general, the difference is equal to the
size of the instructions between two consecutive calls. In
our case, we want to use JavaScript statements to emit
direct calls in the JIT-compiled code. Therefore, the dif-
ference between the constants will be the size of the in-

function js_call_gadget () {

asm_call (); /* emits a call */

asm_call ();

/* ... (many asm_call () statements) */

asm_call (); }

Listing 1: JavaScript function js call gadget

structions in which the JavaScript statement is compiled.
To generalize this attack vector, we aim for a

JavaScript function similar to js call gadget (List-
ing 1). The asm call() statement is a placeholder for
any JavaScript statement (not necessarily a function call)
that is compiled into a sequence of instructions contain-
ing a direct call. The exact statement that replaces the
placeholder depends on the target browser.
Finding callee address: Let our goal be to emit a three-
byte gadget and fix its third byte to 0xc3 (ret). To cal-
culate the constant encoded in the displacement field of
a direct call instruction, we have to know the addresses
of the call instruction and its destination. The destina-
tions of the emitted call instructions that we have encoun-
tered are either helper functions (e.g., inline caches gen-
erated by V8) or built-in functions (such as Math.random
or String.substring). The helper functions are JIT-
compiled by V8 as regular functions. We can leak
their addresses either by stack reading (e.g., by leaking
the return address put there by the call instruction in-
side the helper function), or by reading the V8’s heap,
where all the references of compiled helper functions
are stored. In IE, the built-in functions are located in
libraries and thus are randomized via fine-grained ASLR
schemes [12, 11, 17]. However, their corresponding
JavaScript objects (e.g., Math.random) contain the code
pointer to the function. Knowing the structure of these
JavaScript objects, which are not randomized according
to our assumptions, we can get the addresses of built-in
functions via a memory disclosure vulnerability. Note
that after code pointer hiding, the addresses that the at-
tacker leaks from these JavaScript objects will be the ad-
dresses of the trampolines and not the actual functions.
Nevertheless, offsets, encoded in call (or jump) instruc-
tions, will also be computed relative to the trampolines
and thus can be used for calculating emitted constants.
Emitting call instructions: Knowing the address of the
callee, the next step is to emit direct call instructions at
the correct distance. Given that we cannot influence the
address where the function will be compiled, we have to
acquire sufficiently large code space to cover all three-
byte distances to the callee. To this end, we create a
JavaScript function that spans 0x1 00 00 00 bytes after JIT
compilation and consists of JavaScript statements emit-
ting direct calls. More precisely, we require the dis-
tance between the first and the last emitted direct call
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instructions to be at least 0x1 00 00 00 bytes. This way,
regardless of where our function is allocated, we will be
guaranteed that it covers all possible three-byte distances
from the callee, allowing us to emit arbitrary three-byte
gadgets by carefully placing direct call instructions.
Emitting required gadgets: Creating such a large func-
tion (16 MB) emits many three-byte gadgets, and also
covers all two-byte gadgets. For example, if we have a
JavaScript statement that generates a call instruction and
is compiled to 0x10 bytes of native code, we can create a
big function containing this statement 0x10 00 00 times.
The compiled function will have 0x10 00 00 direct call
instructions 0x10 bytes apart. If we consider the least
significant three bytes of the emitted displacement fields
of these direct calls, they will have the following form:
0x*Y ** **, where * denotes any hexadecimal digit [0-f]
and Y is a constant, which encodes the least significant
half-bytes of emitted values.

Because of the little-endian format used in x86/x64 ar-
chitectures, Y is part of the first byte of emitted gadgets.
Therefore, to emit three-byte gadgets, we must be able
to set Y accordingly. To this end, we modify the value of
Y by varying the size of the instructions before the first
direct call. That is, we find any JavaScript statement that
compiles to an odd number of bytes, and then use it up to
15 times to get any out of all possible 16 half-bytes. For
example, if the least significant half-byte of the call in-
struction is 0x0 and we want to make it 0xd, and we have
a JavaScript statement that compiles to an odd number of
bytes (e.g., i+=1 in 32-bit Chrome, 0x13 bytes), we use
this statement 15 times (0x13*15=0x11d).
Computing addresses of emitted gadgets: Assuming
that the address of the first call instruction in our func-
tion is Fcall , and the address of the callee is Fdest , we
can compute three bytes of the displacement field of
the first call instruction by C1=Fdest-(Fcall+5) mod 224. If
the required gadget is G, then we can compute the dis-
tance (dist) between the call instruction, emitting G,
and the first call instruction: dist=C1-G mod 224. Using
dist, we can calculate the address of the call instruc-
tion emitting G (Fcall+dist), and therefore the address of
the gadget (Gaddr) which is located 1 byte after the call:
Gaddr=(Fcall+dist)+1.

4.4 Direct Call Gadgets in Browsers

We will next discuss techniques that we use to instantiate
the attack in three popular browsers.
Firefox: Emission of direct call gadgets is not possible in
Firefox, as the baseline JIT compiler of Firefox does not
emit direct calls. Although the optimizing JIT compiler
of Firefox emits direct calls, e.g., when compiling regular
expressions, it only optimizes JavaScript functions after
they have been executed more than 1,000 times. Trig-

gering the optimizing compiler on the large functions (as
required for our attack) thus makes our attack impractical
against Firefox.
Chrome: Chrome compiles most JavaScript statements
to direct calls. Consequently, we have a large selection
of JavaScript statements with varying post-compilation
sizes. We use a statement that is compiled to 0x10 bytes
of assembly code (e.g., i=i+j for 32-bit Chrome). For
demonstration purposes, we aim to emit a system call
gadget (int 0x80;ret), implicitly also revealing all two-
byte gadgets. To this end, we create a function shown
in Figure 3(A). The function starts with a sequence of
JavaScript statements that align the first call instruc-
tion to 0xe. After this, the emitted call distances will
be calculated relative to 0x3, i.e., (0xe+0x5) mod 0x10,
where a direct call is 0x5 bytes large. Considering that
the callee is at least half-byte aligned, the lower half-
byte of all emitted gadgets’ first bytes will be 0xd, i.e.,
(0x0-0x3) mod 0x10. The alignment code is followed by
a sequence of call-generating statements (e.g., i=i+j),
each of which compiles to 0x10 byte-long code. The
compiled i=i+j statement emits a call instruction at off-
set 0x*e (due to alignment) as shown in Figure 3(B).
Generating a sequence of 0x10 00 00 call instructions, we
are guaranteed to have an int 0x80;ret gadget encoded
into one of the call instruction constants (Figure 3(C)).

Note that the aforementioned technique is used in the
32-bit version of Chrome. For 64-bit, we use the v++

statement, which is compiled to 0x20 bytes (instead of
0x10) and emits a call instruction. Having 0x20 bytes
between call instructions changes the upper half of the
least significant byte. For example, after aligning the
least significant half-byte to 0xd via padding, the emit-
ted first bytes will be either 0x{0,2,4,6,8,a,c,e}d or
0x{1,3,5,7,9,b,d,f}d, depending on the initial value of
the upper half of the least significant byte. We can mod-
ify this value to our liking by adding the i=i statement,
which is compiled to 0x10 bytes, as padding.
Internet Explorer: For the two main reasons mentioned
in Section 4.1 (code size limit and NOP insertion), emit-
ting gadgets is harder in IE. The per-function code size
limit forbids us to emit 0x1 00 00 00 bytes of native code,
which is required to span all possible third bytes of the
constants encoded in call instructions. However, in the
following, we describe how an attacker can still encode
gadgets in direct calls even in IE.

Emitting calls at correct distance: IE still allows us
to create many small functions. These functions will
be distributed in the set of pages, each of them be-
ing 0x2 00 00 bytes large. We thus allocate many func-
tions (200 in our case), each of them being .0x1 00 00

bytes (i.e., two functions per page). Given the align-
ment (0x1 00 00) and the size (0x2 00 00) of the spanned
code pages, each page will cover two third-bytes of
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(B) i=i+j direct calls (C) Bytes emitted by direct calls(A) JavaScript function

  var

  // Align calls to 0xe

  i = i + j;

  // i=i+j 0x3a86b times

  i = i + j;

  // i=i+j 0xc5793 times

  i = i + j;

0x*0: ...

0x*7: ...

0x*e: call BINARY_OP_IC

...

0x*7: ...

...

0x*7: ...

0x*e: call BINARY_OP_IC

;e8 8d07feff

;e8 cd80c3ff

;e8 8d07fefe

0x*e: call BINARY_OP_IC

}

function

i,j;

js_call_gadget_v8(){

Figure 3: JavaScript function emitting gadgets via direct call constants

the absolute address completely (e.g., from 0x12 34 00 00

to 0x12 35 ff ff). Considering that the callee is not
aligned to the same boundary, direct calls emitted in
these pages will have three distinct third bytes in their
constants, only one of them covered completely. For
example, if we assume the callee to be at address
0x12 34 56 70 and the page emitted at 0x01 70 00 00,
only the call instructions located in the address range
[0x01 70 56 70, 0x01 71 56 70] can emit complete three-
byte constants, having 0xc3 as their third byte, i.e., con-
stants from 0x12 34 56 70 - 0x01 70 56 70 = 0x10 c4 00 00

to 0x12 34 56 70 - 0x01 71 56 70 = 0x10 c3 00 00. On the
other hand, the ranges [0x01 70 00 00, 0x01 70 56 70] and
[0x01 71 56 70, 0x01 71 ff ff] cover only parts of the con-
stants, with 0xc4 and 0xc2 as their third bytes.

After allocating the functions, we dynamically check
their addresses to find the one with the correct distance
from the callee (using the same technique as described
at the end of Section 4.1), i.e., the one having the cor-
rect third byte in its direct call instruction’s displace-
ment field. Allocating 200 JavaScript functions, each of
them containing 0x1 00 00 bytes, is inefficient, especially
if the code has to be downloaded to the victim’s machine.
Therefore, we use eval to spam IE’s code pages with the
dynamically created functions. The problem with evalu-
ated functions is that IE does not emit direct call instruc-
tions in them and uses indirect calls instead. Therefore,
we use these functions only as temporary placeholders.
Once we find any evaluated function at the correct place,
we deallocate it to make its place available for the sub-
sequently compiled functions. To deallocate a JavaScript
function, we set null to all of its references and wait un-
til the garbage collector removes it (typically within less
than a second).

Verifying emitted gadgets: At first sight, IE’s NOP
insertion conflicts with our assumption about the pre-
dictability of JIT-compiled code. With NOP insertion,
and likewise with many other fine-grained code random-
ization schemes, we cannot guarantee that the call in-
struction, which is supposed to emit the gadget, ends up

function js_call_gadget_IE () {

// Padding to correct address

var i = Math.random (); // emit direct call

check_address(<random cookie value >);

}

Listing 2: JavaScript function js call gadget IE

at the correct address. However, because NOPs are in-
serted at random, compiling the same JavaScript func-
tion multiple times actually increases the chance that in
one of the compiled versions, the call instruction ends
up at the correct place.

Following our threat model, though, we cannot read
executable code segments to verify if the compiled
call instruction is at the desired place. As an alter-
native, we read the stack, as shown in Listing 2. In
js call gadget IE(), the statement i=Math.random()

emits a direct call. We pad the beginning of the
function with a few JavaScript statements to place
i=Math.random() at approximately the correct address,
such that the relative address would encode the desired
gadget, accounting the randomness induced by NOP in-
sertions. We then check the correctness of the position
via check address, a JavaScript function that reads the
stack to find the return instruction pointer put there by
the call instruction.

Using the leaked return address, we can calculate
the address of the direct call instruction emitted by
i=Math.random(), verify that it is at the correct place
and if so, use it as a gadget. A simple implementation
of check address is shown in Listing 3, where it uses a
memory disclosure vulnerability (mem read in this case)
to read the stack from some starting point (ESP ), until
it finds its own parameter (cookie). The parameter is a
random number, reducing the chance that multiple po-
sitions have the same value (note that this chance can
be further reduced by using multiple random parame-
ters). After finding the cookie on the stack and thus
the address of the parameter, we know the exact offset
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function check_address(cookie) {

// ESP_: Any address on stack

// NEEDED_ADDRESS: address where

// call must reside

while(mem_read(ESP_) != cookie)

ESP_ -= 4; // Check next value

// get return address from parameter

var ret_ = mem_read(ESP_ - 0xC);

// get call instruction address

var call_addr = ret_ - 5;

return call_addr == NEEDED_ADDRESS;

}

Listing 3: JavaScript function check address

from the parameter’s address, and from there we can tell
where the return address is located. Reading the return
instruction pointer, we recover the address of the corre-
sponding call instruction and verify that it is at the correct
place (NEEDED ADDRESS in this case). We can add another
call to check address before i=Math.random() to verify
if NOPs are inserted between the emitted call instruc-
tions of i=Math.random() and check address(). If both
checks (check address) succeed, we will be guaranteed
that no NOPs were inserted.

IE summary: An attacker can evade both aforemen-
tioned defenses and emit three-byte gadgets even in IE.
To demonstrate this, we first dynamically create many
JavaScript functions to get the correct third byte (0xc3).
After finding the function at the correct distance from the
callee, we replace it with a special function, which, af-
ter compilation, emits direct call instructions and checks
their positions. We trigger the recompilation of the lat-
ter function multiple times, until the checks are true,
which means that the gadget is found. In our experi-
ments, spamming the code pages with functions took ap-
proximately four seconds, and for most of the time, we
found the correct third byte on the first try. Triggering
the recompilation of a function takes the following steps:
(i) Remove the included JavaScript file from the head of
the HTML file, (ii) wait until the function gets removed
by the garbage collector, and (iii) include the JavaScript
file again and trigger the compilation of the same func-
tion. Each iteration of the above steps takes around 2
seconds, most of the delay coming from the second step
(waiting for the garbage collector).

For two-byte gadgets, on the other hand, an attacker
can discard the third byte. In this case, she can directly
compile multiple functions at once, check the positions
of emitted direct calls and use the ones with the required
displacements.

4.4.1 Proof-of-Concept Gadget Generation

To demonstrate the practicality of the aforementioned
gadget emitting techniques, we crafted a special
JavaScript code for Chrome and IE, which generated the
gadgets required for the exploit. The gadgets that we
aimed to generate are the ones used by Athanasakis et al.
Namely, the set of gadgets to load the registers with the
arguments used in a system call and one for the system
call itself. We created these gadgets in Chrome 51 (64
bit) and IE 11 (32 bit).

Chrome: For Chrome, we targeted for the follow-
ing instructions: pop r8; pop r9; pop rcx; pop rdx

(to prepare the system call arguments) and int 0x80 (to
execute the system call). Being able to emit three-byte
gadgets, we encoded these instructions into the follow-
ing gadgets:

pop r8, ret ; 4158c3

pop r9, ret ; 4159c3

pop rcx, ret ; 59c3

pop rdx, ret ; 5ac3

int 0x80, ret ; cd80c3

We used both our proposed techniques for the emis-
sion of these gadgets. We generated a system call gad-
get via direct calls. First, we created a string represen-
tation of a JavaScript function containing 0x80000 j++

statements (j++ takes 0x20 bytes), then we created a
JavaScript function from it via eval, and finally we com-
piled it by calling the generated function. This gave us
a system call gadget, together with all possible two-byte
gadgets, hence also covering pop rcx and pop rdx.

For the generation of pop r8 and pop r9 gadgets,
we used cascaded if statements (also created with
eval). The JavaScript function generating the afore-
mentioned gadgets is shown in Listing 4. As gad-
gets pop r8 and pop r9 differ by 0x100, their corre-
sponding if statements also have to be 0x100 bytes
apart. Note however that in the first if body (F1), we
add 0xed bytes to fill up the space instead of 0x100.
This is due to the fact that an if statement is com-
piled to 0x13 bytes, which is also added to the dis-
tance between relative jumps. To get 0xed bytes, we use
j=0x1010101 7 times (0x1b*7=0xbd) and j++;j=i;j=i

(0x20+0x8+0x8=0x30). To generate 0xc35841 bytes (F2),
we use j=0x1010101 0xd3 times (0x1b*0xd3=0x1641),
and fill the remaining 0xC34200 bytes by using j++

0x61A10 times (0x20*0x61A10=0xC34200).
The entire gadget generation process in Chrome took

≈1.3 seconds, in a VirtualBox Virtual Machine running
Windows 10 (Intel Core i5-4690 CPU 3.50GHz).

Internet Explorer: As we have mentioned earlier, In-
ternet Explorer, by default, comes with a 32-bit JIT com-
piler. Therefore, for gadget generation we chose gadgets
that would be used in a 32-bit system. For simplicity
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function popr8r9(r8,r9) {

var i=0,j=0;

if(r9) {

/* F1: fillup 0xed Bytes */

if (r8) {

/* F2: fillup 0xc35841 Bytes */

}

}

}

Listing 4: JavaScript function popr8r9

function syscallIE () {

var i=0;

i=Math.random ();

... /* 240 times in total */

check_address ();

i=Math.random ();

... /* 10 times in total */

return i;

}

Listing 5: JavaScript function syscallIE

we used the set: popa; int 0x80, where popa sets the
contents all x86 registers from the stack and int 0x80

performs the system call.
The first part of the gadget emission process in IE is

finding the right distance from the callee, i.e., a page
that is 0xc3 bytes away from the callee. This part
was done by a JavaScript code, which simply creates
and compiles big functions (in our case 200 of them,
≈0x10 000 bytes each). After finding the correct page,
we deallocated it and spammed the page with 16 spe-
cially crafted JavaScript functions, each of them cov-
ering 0x1000 bytes. For example, the JavaScript func-
tion used for emitting a system call (Listing 5) contains
250 Math.random calls (each of them compiling to 0xc

bytes). At the correct place between these calls, i.e.,
when the caller is at approximately the correct distance
from Math.random, we inserted a call to check address

to verify the correctness of the gadget. In case the emit-
ted call is not at the correct place, we deallocated the
function and reallocated it again. Note that the reallo-
cation is only needed for three-byte gadgets, where we
also want to control the least significant byte. For two-
byte gadgets (e.g., for popa;ret), we only need to call
check address to compute the address of the call instruc-
tion, for which we already know that is at the correct
place (Listing 6).

In comparison to Chrome, gadget generation in IE is
probabilistic and thus the time required for it also dif-
fers. There are two sources of the variance. First, gen-
erating the large functions to search for the correct third-
byte distance from the callee; and second, compiling the
gadget-emitting function in the found (correct) page, and

function poparetIE () {

var i=0;

i=Math.random ();

... /* 232 times in total */

check_address ();

i=Math.random ();

... /* 28 times in total */

return i;

}

Listing 6: JavaScript function poparetIE

Defense Chrome Firefox IE
Const. Blinding X × X
NOP Insertion × × X
Code Size Limit × × X

Table 1: Current defenses in modern browsers

recompiling it until the correct gadget is emitted. In our
experiments, we created 200 large functions and got the
required third-byte distance for the first time in most of
the cases. Compilation of these 200 functions took ≈4
seconds on a physical machine running Windows 10 (In-
tel Core i5-6200U CPU 2.3GHz). Each recompilation
in the second step took 2-3 seconds. We ran the gadget
generator in IE 10 times. Generating popa; ret and int

0x80; ret took on average 32 seconds, 11 and 47 sec-
onds being the fastest and the slowest respectively.

4.4.2 Summary of Defenses and Vulnerabilities

We have shown that an attacker can encode arbitrary
gadgets by triggering implicit constants with specially-
crafted JavaScript code. Combining this with the abil-
ity to leak code pointers, an adversary can guess the ad-
dresses of the emitted gadgets without reading any code,
thus making the attack possible even if code pages are
non-readable.

Table 1 summarizes the defense techniques of mod-
ern browsers against code-reuse attacks in JIT-compiled
code. Both IE and Chrome deploy constant blinding.
Furthermore, IE uses NOP insertion as a fine-grained
code randomization scheme, as also suggested in li-
brando [17]. However, as Table 2 shows, none of the
modern browsers sufficiently protect against the pro-
posed attacks. Only Firefox “avoids” implicit constants
by not using direct calls in baseline JIT compiler, but still
exposes implicit constants in relative jumps.

1Gadgets up to two bytes can be emitted.
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Attack Chrome Firefox IE
Relative Jumps E E E1

Direct calls E – E

Table 2: Browsers vulnerable to implicit constants

5 Defense

Seeing the threat of implicit constants, we now propose
a technique to defend against it. We identify two steps
that the attacker needs to take for using implicit con-
stants as gadgets: (i) The attacker must be able to emit
the required gadgets, and (ii) she must be able to acquire
the necessary information (e.g., leak function pointers)
to compute the addresses of the emitted gadgets.

One solution to tackle this problem would be to hide
code pointers, e.g., by extending Readactor(++) to also
cover the JIT-compiled code, as Crane et al. suggested.
This would hinder the attacker from executing step (ii).
However, this would still allow the attacker to emit arbi-
trary gadgets by leveraging the implicit constants (step
(i)). Furthermore, the fact that the JIT compiler runs
in the same process as the attacker makes it challeng-
ing to remove all possible code pointers that could, di-
rectly or indirectly, reveal the addresses of emitted gad-
gets. Therefore, we propose an orthogonal defense tech-
nique that forbids the attacker to emit the gadgets in the
first place (i.e., step (i)). Our defense could be comple-
mented with holistic code pointer hiding techniques to
get additional security guarantees.

The main idea of our defense can be split in two parts:
(i) We convert direct calls and jumps into indirect ones,
such that their destination is taken from a register, and
(ii) we use constant blinding to obfuscate the constants
that are emitted by step (i) and may potentially contain
attacker-controlled gadgets. For step (ii), we use the
same cookie that is used by V8 to blind integer con-
stants, and is generated anew before the compilation of
each function. Note that the cookie is encoded in non-
readable code and cannot be leaked. However, even if
the attacker was able to leak the cookie, she could only
guess the immediate values emitted in the current func-
tion, and any future function will have a different cookie
value.

5.1 Removing Implicit Constants from V8

We integrated our defense into V8, Chrome’s JavaScript
engine. We have chosen V8 due to its popularity and due
to the fact that it is vulnerable to both our suggested at-
tacks. Moreover, since V8 JIT-compiles JavaScript di-
rectly to the native code, it emits many checks (con-
ditional jumps) and function calls (e.g., calls to inline

caches), which makes V8 a suitable candidate for our
defense prototype evaluation. For our defense technique,
we changed the functions of V8 that are responsible for
emitting native code. In total, we modified ≈200 lines
of code to account for all the cases of attacker controlled
relative calls or jumps.

5.1.1 Conditional Jumps

To harden conditional jumps, we modified the native
code that is emitted when JavaScript conditionals (such
as if,while,for,do-while) are compiled. Our basic
idea is to switch from relative to absolute jumps, and
blind the resulting immediate values. To this end, we
first add a padding (a sequence of NOP instructions) to
each compiled conditional to reserve the space for later
changes. For the hardened version of the conditional
jump we need 19 bytes (instead of 6 bytes). We thus ap-
pend 13 NOP instructions after the existing conditional
jump. At the end of the compilation, when the constants
of all jumps are calculated, we convert all relative jumps
to absolute jumps, eliminating the need to fill a displace-
ment with potential gadgets.

Figure 4 illustrates the steps of the aforementioned
modifications. Figure 4(A) shows the compiled if state-
ment in original V8. Figure 4(B) shows the same state-
ment with the NOP padding. Finally, Figure 4(C) shows
the assembly of the hardened if statement. In this final
form, the condition of the original jump is inverted and
the original long jump (having 4 byte jump distance) is
replaced with the 1-byte short jump. Consequently, the
new jump is taken if the original condition was false, i.e.,
the fall-through case. Otherwise, we convert the relative
address into the absolute one, by adding it to the current
instruction pointer (rip). This can be done with a single
instruction in x64 (lea r10,[rip+0xc380ca]).

As this instruction will still emit the relative address as
the displacement, we split it in two instructions. First, we
add the current instruction pointer to the relative address
AND-ed with a random key (rip+0xc380ca&KEY). In the
second lea instruction, we add the sum to the relative
address AND-ed with the inverted (bitwise not) random
key, resulting in the desired offset (rip+0xc380ca). Note
that we use obfuscation by AND-ing the constant with a
random key instead of XOR-ing it, because (A+B⊕C)⊕
C does not equal to A+B, while (A+B∧C)+B∧¬C
does. Moreover, this obfuscation scheme allows us to
use lea instructions only, which has the advantage of not
modifying any flags.

5.1.2 Direct Calls

We mitigate the implicit constants in direct calls by con-
verting the direct calls into indirect ones. To this end, we

12



0x00: je 0xc380c4

....

0xc380ca: ....

(A) Original V8 (B) NOP Padding (C) Modified V8

0x06: <if_body>

0x00: je 0xc380cd

0x07: nop

0x08: ...

0x12: nop

0x13: <if_body>

0xc380d3: ....

....

0x00: jne 0x11

0x02: lea r10,[rip+0xc380ca&KEY]

0x09: lea r10,[r10+0xc380ca&~KEY]

0x10: jmp r10

0x13: <if_body>
....

0xc380d3: ....

Figure 4: Steps of JIT hardening in V8

0x00: lea r10, [rip+ADDRESS&KEY ]

0x07: lea r10, [r10+ADDRESS&~KEY]

0x0e: call r10 ; calls 0xc380d3

0x11: ....

Figure 5: Hardening direct calls

distinguish whether the address of the callee is known
at compile time (e.g., when calling built-in functions).
If the callee’s address is known, we can move it to a
scratch register (r10) and then execute an indirect call
mov r10,ADDRESS;call r10. We thus emit the absolute
address of the callee as the immediate value of the mov

instruction, which is not under the control of the attacker
and is thus safe—in contrast to the relative address.

If the address is unknown at compile time, we use a
similar technique as we did for the conditional jumps,
i.e., we convert the relative address into an absolute
one (blinding the relative address during the conversion),
store it in the scratch register, and then execute an indi-
rect call, as shown in Figure 5.

5.2 Evaluation
To evaluate our defense technique we ran the V8 Bench-
mark Suite 7 on our modified V8. We performed each
benchmark 100 times on both the modified and original
V8s, and compared their corresponding averaged results.
Table 3 illustrates the average scores that were returned
by the benchmark suite, where a higher score indicates
better performance. The modified V8 has an average
overhead of less than 2%, and the worst overhead less
than 3%. The observation that the overhead is negative
for the NavierStokes benchmark can be explained by sta-
tistical variations across the different runs.

Additionally, we tested the modified V8 with mi-
crobenchmarks. To this end, we created two JavaScript
functions (ifs true and ifs false), both of them con-
taining 1,000,000 if statements. The condition of the if

statement in ifs true is always true (i.e., the if body
is executed), while the condition of ifs false is always
false. This way the JIT-compiled functions will contain
1,000,000 conditional jump instructions modified by us,

each of them testing separate execution paths. Further-
more, evaluation of the expression in the if statements
is done via a function call. Therefore, both of these
functions generate 1,000,000 modified call instructions
each and will thus incorporate the overhead caused by
the function calls. Each run of the microbenchmark calls
each of these functions 10 times. We ran the benchmark
1,000 times. We distinguish the first execution of these
functions from the remaining nine, as the first execution
is significantly slower due to the JIT-compiler modifying
the generated intermediate functions to adjust them to the
type information. Because the overhead was dominated
mostly by the compiler, we did not see any overhead for
the first function execution. For the remaining function
executions we had 14,25% overhead in ifs false and
9,81% for ifs true.

Besides computational performance, our defense tech-
nique also causes a memory overhead due to added code.
To measure this overhead, we compared the sizes of the
functions compiled by the original and the modified ver-
sions of V8. To get the needed output from V8, we ran it
with the --print-code flag, which outputs the disassem-
bled code for each function after the compilation together
with additional information about the compiled function
including the size of the generated instructions. Run-
ning the benchmark suite with the aforementioned flag
yielded that the total size of the instructions emitted by
the original V8 was 1,123 kB, while the modified V8
emitted 1,411 kB, giving 287 kB of additional code, i.e.,
≈26% code size overhead. Given the significant size of
the benchmark suite, and given that memory of nowa-
days x86/x64 systems are typically in the range of giga-
bytes, we think that hundreds of kB of additional code
does not cause any bottlenecks on COTS systems.

6 Discussion

6.1 Defense Security Considerations

Our defense follows the general goal to remove unin-
tended gadgets from constants in JIT-compiled code. We
tailored our defense implementation towards protecting
jump and call offsets. Other offsets may be usable to en-
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Benchmark Original Modified Overhead(%)
Richards 36,263 35,555 1.95
DeltaBlue 63,641 62,045 2.51
Crypto 33,366 32,725 1.92
RayTrace 77,198 75,488 2.21
EarleyBoyer 44,900 43,700 2.67
RegExp 6,525 6,414 1.71
Splay 21,095 20,479 2.92
NavierStokes 31,924 31,998 -0.23
Total 32,255 31,662 1.96

Table 3: Scores by the V8 benchmark (higher is faster)

code further gadgets. For example, relative addressing
is frequently used in combination with the base pointer,
such as when accessing parameters of a JavaScript func-
tion. As parameters are stored on the stack, they are
accessed relative to the frame pointer (ebp/rbp). Each
parameter access, after JIT-compilation, emits an assem-
bly instruction, which contains the offset of the param-
eter from the frame pointer in its displacement field:
mov [ebp+0x0c],0x1. The number of possible gad-
gets, in this technique, is restricted by (i) limited stack
size (e.g., maximum 216− 1 (0xffff) function parame-
ters in Chrome) and (ii) stack alignment (4 or 8 bytes). In
combination, this only allows generating gadgets whose
opcodes are multiples of 4 (or 8) and are in the range be-
tween 0xc and 0x40000, and thus gives the attacker only
limited capabilities. The stack size restrictions impose
the same limitations on implicit gadgets encoded in rela-
tive accesses to function’s local variables

While we think that the most important constants are
blinded, we cannot exclude the existence of further ways
to encode gadgets in assembly instructions. To eradicate
all potential gadgets, one could prevent the JIT compiler
from creating any potential gadgets (even in unaligned
instructions). Most notably, G-Free [24] is a gadget-
free compiler, which tries to generate gadget free bina-
ries. However, G-Free requires multiple recompilations
and code adjustments to reliably remove all possible gad-
gets. This will increase the runtime overhead for the JIT
compilers, as the compilation time is included in their
runtime.

6.2 Fine-Grained Code Randomization

An orthogonal approach to our defense would be to re-
move the attacker’s capability to find the gadget’s loca-
tion (i.e., address). One way of doing so would be to
hide code pointers, e.g., via trampolines, as suggested
by Crane et al. [11]. If code pointers are not hidden,
the attacker can read the return instruction pointer on the
stack to get a pointer to the created gadget—which rep-

resents the current status in XnR implementations. This
results in (i) getting access to the gadget, (ii) a possibil-
ity to verify the gadget at runtime, and (iii) the ability to
retry in the case of a false result. By using similar tech-
niques as we used against NOP insertion, the attacker
can defeat fine-grained code randomizations such as the
ones underlying Readactor [11]. Even though current
XnR implementations do not hide code pointers in JIT-
compiled code, XnR’s ideal implementation could also
expand fully to the JIT-compiled code, e.g., by introduc-
ing trampolines. This, together with the fine-grained ran-
domization schemes such as NOP insertion, would suc-
cessfully protect against our attack. Note, however, that
NOP insertion does not remove gadgets, but tries to re-
duce the chances of the attacker to guess their locations.
In contrast, our proposed defense technique removes the
gadgets, hence also removing the risk of the attacker do-
ing a guesswork. Combining our technique with the ex-
tended XnR implementation would further improve the
security guarantees, removing the chances of both emit-
ting the gadgets and leaking the code layout information.

To guard against JIT-compiled gadgets, Wei et al. pro-
posed to do several code modifications such as (i) secur-
ing immediate values via constant blinding, (ii) modify-
ing internal fields of the instruction (e.g., registers being
used), and (iii) randomizing the order of the parameters
and local variables to randomize the offsets emitted by
them [34]. However, this is not effective against the at-
tacks proposed in Section 4, as the modifications do not
secure the displacement fields emitted by relative call-
s/jumps. Finally, the code randomization proposed by
Homescu et al. [17] that adds NOP instructions to ran-
domize the code output from the JIT compiler remains
ineffective if code pointers in JIT-compiled code are not
hidden.

6.3 Attack Generality

A natural question is how the proposed attack general-
izes, in particular to other operating systems or CPU
architectures. We have evaluated the attacks against
Chrome and Firefox running on Linux and IE on Win-
dows. As we exploit properties of the JIT compilers to
generate desired gadgets, the choice of the underlying
operating system is arbitrary. The proposed attacks rely
on the x86 system architecture (32- or 64-bit), though. In
RISC architectures, such as ARM and MIPS, instruction
lengths are fixed, and execution of unaligned instructions
is forbidden by the hardware. However, the attacks may
still apply to ARM, as an attacker could emit arbitrary
two-byte values in the code if she can force the program
to switch to 16-bit THUMB mode. Although this lim-
its the attacker to using a single instruction, it still allows
setting the register contents and diverting the control flow
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at the same time, e.g., by using a pop instruction.
We implemented our defense in the 64-bit version of

V8, taking advantage of the x64 architecture’s ability to
directly read the instruction pointer (rip). This simpli-
fied the effort of converting relative addresses into ab-
solute ones. Even though one can read the instruction
pointer indirectly in 32-bit, e.g., by call 0x0;pop eax,
such additional memory read instructions would increase
the performance overhead. In addition, 32-bit features
only eight general-purpose registers. While in x64 we
could freely use a scratch register (r10 for Chrome), in
x86 we would likely need to save and restore the register.
Similar defenses in x86-32 are thus possible, but come at
an additional performance penalty. However, given that
64-bit systems are increasingly dominating the x86 mar-
ket, we think that 64-bit solutions are most relevant.

7 Related Work

In the following, we will summarize existing code-reuse
attacks and proposed defense mechanisms.

7.1 Code-Reuse Attacks: ROP / JIT-ROP
The most widespread defense against ROP is ASLR [32],
which randomizes the base addresses of memory seg-
ments. Although it raises the bar, ASLR suffers from
low entropy on 32-bit systems [30] and is not deployed
in many libraries [28]. In addition, ALSR does not ran-
domize within a memory segment, and thus leaves code
at fixed offsets from the base address. Attackers can thus
undermine ASLR by leaking a code pointer [18].

Researchers thus suggested fine-grained ASLR
schemes that randomize code within segments. Fine-
grained ASLR hides the exact code addresses from an
attacker, even if a base pointer was leaked. For example,
Pappas et al. [25] suggest diversifying code within basic
blocks, such as by renaming and swapping registers,
substituting instructions with semantically equivalent
ones, or changing the order of register saving instruc-
tions. ASLP, proposed by Kil et al. [20], randomizes
addresses of the functions as well as other data structures
by statically rewriting an ELF executable. To increase
the frequency of randomization, Wartell et al. propose
STIR [33], which increases randomness by permuting
basic blocks during program startup.

However, the invention of JIT-ROP undermined fine-
grained ALSR schemes [31]. JIT-ROP assumes a mem-
ory disclosure vulnerability, which can be used by the
attacker repeatedly. The attacker then follows the point-
ers to find executable memory, which she can read to find
gadgets and build ROP chains on-the-fly.

Recently, Athanasakis et al. [1] proposed to extend
JIT-ROP-like attacks by encoding gadgets in immediate

values of JIT-compiled code. Despite being limited to
two-byte constant emission by IE, the authors managed
to use aligned ret instructions, located at the end of each
function, as the part of their gadget. Note that, in their
attack, the authors were able to emit complete two-byte
gadgets in IE. Therefore, this attack will be further lim-
ited against the 32-bit version of Chakra, which is a de-
fault JIT compiler, even for 64-bit IE. In addition, there
are by now known defenses, such as constant blinding,
that protect against explicit constants.

7.2 Hidden or Non-Readable Code

In reaction to JIT-ROP, researchers started to propose a
great number of defensive schemes that try to hide code
or function pointers. In Oxymoron, Backes et al. [3]
aim to defend against JIT-ROP by hiding code pointers
from direct calls. However, the attacker can still find in-
direct code pointers (e.g., return addresses on the stack
or code pointers on the heap), and follow them to read
the code. Davi et al. [13] thus proposed Isomeron, an
improved defense. They keep two versions of the code
at the same time, one original and another diversified us-
ing fine-grained ASLR. At each function call, they flip
a coin to decide which version of the code to execute.
This gives a 50% chance of success for each gadget in
the chain, making it unlikely to guess correctly for long
gadgets.

Gionta et al. [15] proposed HideM, which utilizes a
split TLB to serve read and execute accesses separately,
thus forbidding the attacker to read code pages. Apart
from requiring hardware support, HideM also has a limi-
tation that it does not protect function pointers, allowing
the attacker to use them in code reuse attacks.

Backes et al. [2] and Crane et al. [11] proposed
two independent defense techniques, XnR and Readac-
tor, respectively, based on the same principle: mak-
ing executable regions of the memory non-readable.
XnR does this in software, marking executable pages
non-present and checking the validity of the accesses
in a custom page-fault handler. This leaves only a
small window of (currently executing) readable code
pages, significantly reducing the surface of gadgets an
attacker can learn. Readactor uses Extended Page Tables
(EPT), hardware-assisted virtualization support for mod-
ern CPUs. EPTs allow keeping all executable pages non-
readable throughout the entire program execution. In ad-
dition, Readactor diversifies the static code of the pro-
gram and hides addresses of the functions by introduc-
ing call/jump trampolines, making it impossible to guess
the address of any existing code. While being effective
against ROP attacks, Readactor left some pointers, such
as function addresses in import tables and vtable point-
ers, intact, thus leaving the programs vulnerable against
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function-wise code reuse attacks like return-to-libc [22]
or COOP [27]. The fixes to these problems have been
proposed by Crane et al. in their followup work Readac-
tor++ [12]. We have demonstrated how an adversary
can undermine these proposals if code pointer in JIT-
compiled code are not hidden. As an orthogonal defense
to hiding code pointer in JIT code, we proposed to elim-
inate implicit constants from JIT-compiled code to pre-
serve XnR’s security guarantees.

Pereira et al. [26] designed a similar defense technique
via a software-only approach for the ARM architecture.
They propose Leakage-Resilient Layout Randomization
(LR2), which achieves non-readability of code in ARM
by splitting the memory space in data and code pages and
instrumenting load instructions to forbid code reading.
Furthermore, LR2 proposed to reduce the size overhead
caused by trampolines by using a single trampoline for
each callee and encoding the return address with secret
per-function keys.

7.3 Defending JIT Against Attacks

Finally, we discuss research that aims to protect JIT
compilers against exploitation. In JITDefender, Chen et
al. [9] remove executable rights from the JIT-compiled
code page until it is actually called by the compiler, and
remove the rights when it is done executing. In this way
they try to limit the time during which attackers can jump
to JIT-sprayed shellcode. Although this was effective
against some existing JIT-spraying attacks, JITDefender
can be tricked by the attacker to keep the needed pages
always executable, e.g., by keeping the executed code
busy. Wu et al. [35] proposed RIM (Removing IMme-
diate), in which they rewrite instructions containing im-
mediate values such that they cannot be used as a NOP
sled. Later, Chen et al. [10] proposed to combine RIM
and JITDefender, i.e., remove the executable rights from
JIT-compiled code pages when not needed and also re-
place instructions containing immediate values.

In INSeRT, Wei et al. [34] propose fine-grained ran-
domizations for JIT-compiled code. Their technique
combines (i) removing immediate values via XORing
them with random keys (i.e., constant blinding); (ii) reg-
ister randomization; and (iii) displacement randomiza-
tion (e.g., changing the order of parameters and local
variables). Furthermore, INSeRT randomly inserts trap-
ping instruction sequences, trying to catch attackers di-
verting the control flow. Still, its randomization neither
affects call/jump displacements, nor would randomiza-
tion without hiding code actually hinder our approach.

Most related to our attack are the defensive JIT ran-
domization approaches proposed by Homescu et al. [17].
They propose librando, a library that uses NOP insertions
to randomize the code offsets of JIT-compiled code. We

have demonstrated that even browsers leveraging NOP
insertion (like IE) are susceptible to our proposed attack
and thus proposed a non-probabilistic defense.

8 Conclusion

We have shown that commodity browsers do not protect
against code reuse in attacker-generated, JIT-compiled
code. Our novel attack challenges the assumption of
XnR schemes in that we demonstrate that an attacker
can create predictable ROP gadgets without the need
to read them prior to use. To close this gap, we sug-
gested to extend XnR schemes with our proposed coun-
termeasure that eliminates all critical implicit constants
in JIT-compiled code, effectively defending against our
attack. Our defense evaluation shows that such practical
defenses impose little performance overhead.
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