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Two-factor authentication (2FA) schemes aim at strengthening the security of 
login-password–based authentication by deploying secondary authentication 
tokens. In this context, mobile 2FA schemes require no additional hardware 
(such as a smartcard) to store and handle the secondary authentication token, 
and hence are considered as a reasonable tradeoff between security, usability, 
and cost. They are widely used in online banking and increasingly deployed by 
Internet service providers.

In this article, we investigate 2FA implementations of several well-known 
Internet service providers such as Google, Dropbox, Twitter, and Facebook. 
We identify various weaknesses that allow an attacker to easily bypass 2FA, 
even when the secondary authentication token is not under the attacker’s 
control. We then go a step further and present a more general attack against 
mobile 2FA schemes. Our attack relies on a cross-platform infection that 
subverts control over both end points (PC and a mobile device) involved in the 
authentication protocol.

We apply this attack in practice and successfully circumvent diverse schemes: 
SMS-based TAN solutions of four large banks, one instance of a visual TAN 
scheme, 2FA login verification systems of Google, Dropbox, Twitter, and 
Facebook accounts, and the Google Authenticator app currently used by 32 third-
party service providers. Finally, we cluster and analyze hundreds of real-world 
malicious Android apps that target mobile 2FA schemes and show that banking 
Trojans already deploy mobile counterparts that steal 2FA credentials like TANs.

Introduction
The security and privacy threats through malware are constantly growing 
both in quantity and quality. In this context the traditional login/password 
authentication is considered insufficiently secure for many security-critical 
applications such as online banking or logins to personal accounts. Two-factor 
authentication (2FA) schemes promise a higher protection level by extending 
the single authentication factor, that is, what the user knows, with other 
authentication factors such as what the user has (for example, a hardware token 
or a smartphone), or what the user is (for example, biometrics).[29] 

Even if one device/factor (such as a PC) is compromised—a typical scenario 
nowadays—the chance of the malware to gain control over the second device/
factor (such as a mobile device) simultaneously is considered to be very low. 

While biometric-based authentication is relatively expensive and raises privacy 
concerns, one-time passwords (OTPs) offer a promising alternative for 2FA 
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systems. For instance, hardware-based tokens such as OTP generators[27] are 
less costly but still generate additional expenses for users and are inconvenient, 
particularly when the user needs to carry additional hardware tokens for 
different organizations (for example, for accounts at several banks). On the 
other hand, 2FA schemes that use mobile devices (such as smartphones) have 
become popular recently and have been adopted by many banks and large 
service providers. These mobile 2FA schemes are considered to provide an 
appropriate tradeoff between security, usability, and cost, and are the focus of 
this article.

A prominent example of mobile 2FAs are SMS-based TAN systems (known 
as mTAN, smsTAN, or mobileTAN). Their goal is to mitigate account 
abuse even if the banking login credentials have been compromised, for 
example, by a PC-based banking Trojan. Here, the service provider (the 
bank) generates a Transaction Authentication Number (TAN), which is 
a transaction-dependent OTP, and sends it over SMS to the customer’s 
phone. The user/customer needs to confirm a banking transaction by 
entering this TAN into the other device (typically a PC). Alternatively, 
visual TAN schemes encrypt and encode the TAN into a 2D barcode (visual 
cryptogram), which is displayed on the customer’s PC from where it is 
photographed and decrypted by the corresponding app on the smartphone. 
SMS-based TAN schemes are widely deployed worldwide, also by the 
world’s biggest banks such as Bank of America, Deutsche Bank, Santander 
in UK, ING in the Netherlands, and ICBC in China. Further, some large 
European banks have adopted visually based TAN systems recently.[7][14][15] 
Moreover, mobile 2FA is increasingly used by the global service providers 
such as Google, Twitter, and Facebook to mitigate the massive abuse of 
their services. Users need their login credentials and an OTP to complete 
the login process. The OTPs are sent to the smartphone via SMS messages 
or over the Internet connection. In addition, some providers offer apps that 
can generate OTPs on the client side, a convenient setup without the need 
for out-of-band communication. For instance, such an approach is followed 
by Google Authenticator, the popular 2FA app currently used by 32 third-
party service providers.

Goal, Contributions, and Outline
The main goal of our article is to investigate and evaluate the security of various 
mobile 2FA schemes that are currently deployed in practice and are used by 
millions of customers/users. 

 • Single-infection attacks on mobile 2FA schemes. We investigate the deployed 
mobile 2FA of Google, Twitter, Facebook, and Dropbox service providers 
(see the next section, “Single-Infection Attacks on Mobile 2FA”). We point 
out their conceptual and implementation-specific security weaknesses and 
show how malware can bypass them, even when a single device, a PC, is 
infected. For example, some providers allow the user to deactivate 2FA 
without the need to verify this transaction with 2FA—an easy way for PC 
malware to circumvent the scheme. Other providers offer master passwords, 
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which as we show, can be stolen and then be used to authenticate without 
using an OTP. We further show how to exploit Google Authenticator, a 
mobile 2FA login protection app used by dozens of service providers.

 • A more general 2FA attack based on dual infections. Then we turn our 
attention to more sophisticated attacks of general nature, and show that 
even if one of the devices (involved in a 2FA) is infected by malware, it can 
infect the other device with a cross-platform infection in realistic adversary 
settings (see the section “Dual-Infection Attacks on Mobile 2FA”). We 
demonstrate the feasibility of such attacks by prototyping PC-to-mobile 
cross-platform attacks. Our concept significantly enhances the well-known 
banking Trojans ZeuS/ZitMo[23] or SpyEye/SpitMo.[6] In contrast to these 
attacks that need to lure users by phishing, our technique does not require 
any user interaction and is completely stealthy. Once both devices are 
infected, the adversary can bypass various instantiations of mobile 2FA 
schemes, which we show by prototyping attacks against SMS-based and 
visual transaction authentication solutions of banks and login verification 
schemes of various Internet providers.

 • 2FA malware in the wild. Finally, to underline the importance to redesign 
mobile 2FA systems, we cluster and reverse engineer hundreds of real-world 
malicious apps that target mobile 2FA schemes (see the section “Real-World  
2FA Attacks”). Our analysis confirms, for example, that banking Trojans 
already deploy mobile counterparts that allow attackers to steal 2FA 
credentials like TANs.

Single-Infection Attacks on Mobile 2FA
In this section, we analyze the security of mobile 2FA systems in face of 
compromised computers. We consider mobile 2FA schemes as secure if an 
adversary who compromised only a user’s PC (but has no control over a mobile 
device) cannot authenticate in the name of the user. Such an attacker model is 
reasonable, as assuming a trustworthy PC would eliminate the need in utilizing 
a separate device to handle the secondary authentication credential.  

Low-Entropy OTPs
Here we analyze the strength of OTPs generated by the four service providers 
under analysis. In general, low-entropy passwords are vulnerable to brute-
force attacks. We thus seek to understand if the generated OTPs exhibit full 
basic randomness criteria. For this, we implemented a process to automatically 
collect OTPs from Twitter, Dropbox, and Google. We had to exclude the 
Facebook service from this particular test, because our test accounts were 
blocked after collecting only a few OTPs—presumably to keep SMS-related 
costs manageable. 

To automate the collection process of OTPs, we implemented host software 
that initiates the login verification and submits the login credentials, while a 
mobile counterpart monitors incoming SMS messages on the mobile device 
and extracts OTPs into a database. The intercepted OTP is then used to 
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complete the authentication process at the PC. We repeat this procedure 
periodically. We used a collection time interval of 15 minutes for Dropbox and 
Twitter, but had to increase it to 30 minutes for Google to avoid our account 
from being blocked. In total, we collected 1564 (Dropbox), 659 (Google), and 
775 (Twitter) OTPs. All investigated services create 6-digit OTPs represented 
in decimal format. We provide graphical representation of the collected OTPs 
in Figure 1.

(a) Dropbox (b) Google (c) Twitter

F igure 1: oTPs collected from three service providers. we plot a 6-digit 
oTP by plotting its two halves on the x- and y-axis (1000 dots wide). 
For example, the oTP “012763” is plotted at x = 12 and y = 763. 
Symbols “+” and “×” represent one and two occurrences of the same 
oTP, respectively.
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

While the OTPs generated by Dropbox and Twitter passed standard 
randomness tests, we observed that Google OTPs never start with a zero. 
Leaving out one tenth of all possible OTP values reduces the entropy of  
the generated passwords: the number of possible passwords is reduced by  
10 percent from 106 to 106 – 105.

Lack of OTP Invalidation
We made another important observation concerning invalidation of OTPs. 
We noticed that—if we do not complete the 2FA process—Google repeatedly 
created the same OTP for consecutive authentication trials. Google only 
invalidates OTPs (i) after an hour, or (ii) after a user successfully completed 
2FA. We tested that the OTPs repeat even if the IP address, browser, and OS 
version of the user who wants to log in changes. An attacker could exploit 
this weakness to capture an OTP, while at the same time preventing the user 
from submitting the OTP to the service provider. This way, the captured OTP 
remains valid.

The adversary can then reuse the OTP in a separate login session, because 
Google will still expect the same OTP—even for a different session.

Similar man-in-the-browser attacks are also possible if OTPs are invalidated, 
but they add a higher practical burden to the attacker.
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2FA Deactivation 
If 2FA is used for login verification, users can typically opt in for the 2FA 
feature. In the following section, we investigate how users (or attackers) can opt 
out from the 2FA feature. Ideally, disabling 2FA would require further security 
checks. Otherwise we risk that PC malware might hijack existing sessions in 
order to disable 2FA.

We therefore analyzed the deactivation process for the four service providers. 
We created one account per provider, logged in to these accounts, enabled 2FA 
and—to delete any session information—signed out and logged in again.

We observed that when logged in, users of Google and Facebook services can 
disable 2FA without any additional authentication. Twitter and Dropbox 
additionally require user name and password. None of the investigated service 
providers requested an OTP to authorize this action. Our observations imply 
that the 2FA schemes of the evaluated providers can be bypassed by PC 
malware without the need to compromise the mobile device. PC malware can 
wait until a user logs in, and then hijack the session and disable 2FA in the 
user’s account settings. If additional login credentials are required to confirm 
this operation (as required by Twitter and Dropbox), the PC malware can 
reuse credentials that can be stolen, for example, by applying key logging or a 
man-in-the-browser attack.

2FA Recovery Mechanisms
While 2FA schemes promise improved security, they require users to have 
their mobile devices with them to authenticate. This issue may affect usability, 
because users may lose control over their accounts if control over their 
mobile device is lost (for example, if the device is lost, stolen, or temporarily 
unavailable due to discharged battery). To address this issue, service providers 
enable recovery mechanisms that allow users to retain control over their 
account in the absence of their mobile device. On the downside, attackers may 
misuse the recovery mechanism in order to gain control over user accounts 
without compromising the mobile device. 

Among the evaluated providers, Twitter does not provide any recovery 
mechanism. Dropbox uses a so-called recovery password, a 16-symbol-wide 
random string in a human-readable format, which appears in the account 
settings and is created when the user enables 2FA. Facebook and Google use 
another recovery mechanism. They offer users an option to generate a list 
of ten recovery OTPs, which can be used when they have no access to their 
mobile device. The list is stored in the account settings, similar to the recovery 
passwords of Dropbox. Dropbox and Google do not require any additional 
authentication before allowing access to this information, while Facebook 
additionally asks for the login credentials. 

As the account settings are available to users after they have logged in, these 
recovery credentials (OTPs and passwords) can be accessed by malware that 
hijacks user sessions. For example, PC-residing malware can access this data by 
waiting until users sign in to their account. Hijacking the session, the malware 
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can then obtain the recovery passwords from the web page in the account 
settings—bypassing the additional check for login credentials (as in the case  
of Facebook).

OTP Generator Initialization Weaknesses
Schemes with client-side generated 2FA OTPs, such as Google Authenticator 
(GA), rely on pre-shared secrets. The distribution process of pre-shared secrets 
is a valuable attack vector. We analyzed the initialization process of the GA 
app, which is used by dozens of services including Google Mail, Facebook,  
and Outlook.com.

The GA initialization begins when the user enables GA-based authentication 
in the user’s account settings. The service provider generates a QR code that 
is displayed to the user (on the PC) and should be scanned by the user’s 
smartphone. The QR code contains all information necessary to initialize 
GA with user-specific account details and pre-shared secrets. We analyzed the 
QR code sent by Facebook and Google during the initialization process and 
identified the structure of the QR code. It includes such details as the type 
of the scheme (counter-based vs. time-based), service and account identifier, 
a counter (only for counter-based mode), the length of the generated OTP, 
and the shared secret. All this data is presented in clear text. To check if any 
alternative initialization scheme is supported by GA, we reverse engineered 
the app with the JEB Decompiler and analyzed the app internals. We did 
not identify any alternative initialization routines, which indicates that all 32 
service providers using GA use this initialization procedure.

Unfortunately, PC-residing malware can intercept the initialization message 
(clear text encoded as a QR code). The attacker can then initialize the attacker’s 
own version of the GA and can generate valid OTPs for the target account.

Dual-Infection Attacks on Mobile 2FA
In this section, we present a more general attack against mobile 2FA schemes. 
Particularly, we present the attack model that does not rely on implementation 
weaknesses (as, for example, weaknesses reported in the previous section), but 
rather conceptual. Particularly, we apply cross-platform infection attacks 
(PC-to-mobile) in context of mobile 2FA schemes. Our attack model 
undermines the security of a large class of 2FA schemes that are widely used in 
security-critical applications such as online banking and login verification.

System Model
Our system model is depicted in Figure 2. It includes the following actors:  
(i) a user U, (ii) a web server S, (iii) a computer C, (iv) a mobile device M, and 
(v) a remote malicious server A. The user U is a customer who is subscribed for 
the online service. The web server S is maintained by the service provider of 
the online service. The computer C is either a desktop PC or a laptop used by 
the user to access the web site hosted by S. The mobile device M is a handheld 
computer or a smartphone of U, which is involved in authentication of U 
against S.
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The legitimate communication between the entities is illustrated with dashed 
arrows in Figure 2. To get access to the service, U has to prove to S possession 
of both authentication tokens T1 and T2. The first authentication token 
T1 is handled by C (typically represented by login credentials). The second 
authentication token T2 is handled by the mobile device M. T2 is an OTP 
which is either received from S via an out-of-band channel, or generated 
locally on M.

Computer C

Primary infection

Steal T1

Authenticate

with T1, T2

Web-server SAdversary A
User U

Mobile device M

T2

T1

3b

2

3a

4

1

Steal T2

Cross-platform
infection

F igure 2: System model and attack steps
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

A remote malicious server A represents an adversary who aims to gain control 
over C and M and to steal authentication tokens T1 and T2 in order to be able 
to successfully authenticate against S in the name of U.

Assumptions
We assume that C, the user’s PC, is compromised. This assumption is 
reasonable, because nowadays many PCs are infected. We further assume that 
the second device, either M or C, suffers from a (memory-related) vulnerability 
that allows the attacker to subvert the control over the code execution. The 
probability for such vulnerabilities is quite high for both mobile and desktop 
operating systems. As a reference, the National Vulnerability Database[1] 
lists more than 55,000 discovered information security vulnerabilities 
and exposures for mainstream platforms. Despite decades of history, these 
vulnerabilities are a prevalent attack vector and pose a significant threat to 
modern systems.[31]

Attack Description
The general attack scenario has four phases, which are illustrated by solid lines 
in Figure 2: (i) primary infection; (ii) cross-platform infection; (iii) stealing 
authentication tokens, and (iv) authentication.

1. Primary infection. We do not specify the way the attacker achieves a primary 
infection. Instead, we assume that C is already infected (see the previous 
section, “Assumptions”).
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2. Cross-platform infection. The infected C attempts to compromise M by 
triggering a memory-related vulnerability. Exploitation is possible if, for 
example, both devices are connected to a single network, as described 
in the following section, “Cross-Platform Infection in LAN/WLAN 
Networks.”

3. Stealing authentication tokens. As we will show, when controlling M and 
C, an attacker A can obtain both authentication tokens T1 and T2 (steps 
3a and 3b respectively). Static authentication tokens that do not change 
from one to another authentication session (such as login credentials) are 
immediately transmitted to and persistently stored at A.

4. Authentication. Authentication is performed by A, who controls both 
authentication tokens. A has a local copy of static authentication tokens 
(such as login credentials), and can obtain OTPs by forwarding them from 
M to A. Note that A does not only hijack the session of U, but can even 
establish the attacker’s own sessions at any time and independently from U.

Cross-Platform Infection in LAN/WLAN Networks 
LAN/WLAN networks are often used at home, at work, or in public places, 
such as hotels, cafes, or airports. Users often connect both their PCs and 
mobile devices to the same network (for example, in home networks). To 
perform cross-platform infections in the LAN/WLAN network, the malicious 
PC becomes a man in the middle (MITM) between the mobile device and the 
Internet gateway in order to infect it via malicious payloads. To become an 
MITM, techniques such as ARP cache poisoning[5] or a rogue DHCP server[18] 
can be used. Next, the MITM supplies an exploit to the victim, which results 
in code injection and remote code execution. 

For our implementation of cross-platform infection, we used a rogue 
DHCP server attack to become an MITM. In particular, C advertises itself 
as a network gateway and becomes an MITM when its malicious DHCP 
configuration is accepted by M. As the MITM, C can manipulate Internet 
traffic supplied to M. When M connects to the network and requests an IP 
address, this request is served by our malicious DHCP server, which assigns  
a valid configuration for this network, but substitutes the correct gateway  
IP address with its own. The malware loads a driver that implements network 
address translation (NAT) to dynamically forward any HTTP request to an 
external or local HTTP server. This server answers every HTTP request with a 
malicious web page. 

When U opens the browser in M and navigates to any web page, the request 
is forwarded to C due to the network configuration of M specifying C as a 
gateway. The malicious C does not provide the requested page, but supplies 
a malicious page containing an exploit triggering the vulnerability in the web 
browser. In our prototype we used a use-after-free vulnerability CVE-2010-1759  
in WebKit, the web engine of the Android browser. We further perform a 
privilege escalation to root by triggering the vulnerability CVE-2011-1823 in 
the privileged Android’s volume manager daemon process.
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Bypassing Different Instantiations of Mobile 2FA Schemes
Next we present instantiations of dual-infection attacks against a wide range 
of mobile 2FA schemes. Particularly, we prototyped attacks against SMS-based 
TAN schemes of several banks, bypassed 2FA login verification systems of 
popular Internet service providers, defeated the visual TAN authentication 
scheme of Cronto, and circumvented Google Authenticator. Overall, our 
prototypes demonstrate successful attacks against mobile 2FA solutions of 
different classes.

Bypassing SMS-based TAN Schemes and 2FA Login Verification Schemes
To bypass SMS-based TAN schemes used by banks and 2FA login 
verification systems, we launched a man-in-the-browser attack on the PC 
to steal the login credentials (that is, PIN or password) from the computer 
before they are transferred to the web server of the bank or the service 
provider. Further, we implemented mobile malware that obtains the 
secondary credential, an OTP or TAN, by intercepting SMS messages on 
the mobile device. It acts as a man-in-the-middle between the GSM modem 
and the telephony stack of Android and intercepts all SMS messages of 
interest (so that the user does not receive them), while it forwards all other 
SMS messages for “normal” use.

We successfully evaluated our prototype on online banking deployments of 
four large international banks (the names of the banks are kept undisclosed) 
and evaluated it against the 2FA login verification systems of Dropbox, 
Facebook, Google, and Twitter. 

Bypassing Visual TAN Solutions
To demonstrate the effectiveness of dual-infection attacks against visual TAN 
solutions, we successfully crafted such an attack against the demo version of 
the Cronto visual transaction signing solution—the CrontoSign app (v. 5.0.3). 
We reused the man-in-the-browser attack to leak login credentials from the PC 
and used our mobile malware to steal key material stored by the CrontoSign 
app. We then copied stolen files with key material onto another (adversarial) 
phone with CrontoSign installed and then performed a login attempt with 
stolen login credentials and the adversarial phone. The app on the adversarial 
phone produced correct OTP, which was then used to successfully complete 
authentication. 

Bypassing Google Authenticator (GA) App
We selected Google Authenticator (GA) as our attack target due to its wide 
deployment. As of October 2013, it was being used by 32 service providers, 
among them Google, Microsoft, Facebook, Amazon, and Dropbox. The GA 
app does not receive OTP from the server, but instead generates it on client 
side. The generation algorithm is seeded with a secret that is shared between 
the server and the mobile client and further requires a pseudo-random input 
like a nonce to randomize the output value of each run. GA supports the 
following nonce values: shared time (in a form of the time epoch) or a counter 
with a shared state. In either case, it stores all security-sensitive parameters 
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(such as the seed and a nonce) for the OTP generation in an application-
specific database. Hence, to bypass the scheme, our PC-based malware steals 
login authentication credentials, while our mobile malware leaks the database 
file stored in the GA application directory. We copied the database on another 
mobile device with an installed GA app and were able to generate the same 
OTPs as the victim.

Real-World 2FA Attacks
Until now, we have drafted attacks that enable attackers to circumvent mobile 
2FA systems in a completely automated way. In this section, we analyze real-
world malware in order to shed light onto how attackers already bypass 2FA 
schemes in the wild.

Dataset
Our real-world malware analysis is based on a diverse set of Android malware 
samples obtained from different sources.

We analyzed malware from the Malgenome[33] and Contagiodump[34] 
projects. In addition, we obtained a random set of malicious Android 
files from VirusTotal. Note that we aimed to analyze malware that attacks 
2FA schemes. We thus filtered on malware that steals SMS messages, that 
is, malware that has the permission to read incoming SMS messages. In 
addition, we only analyzed apps that were labeled as malicious by at least 
five antivirus vendors. Our resulting dataset consists of 207 unique malware 
samples.

Malware Analysis Process
We used a multistep analysis of Android malware samples, as depicted in 
Figure 3. First, we dynamically analyzed the malware in an emulated Android 
environment. Dynamic analysis helped us to focus on the malware’s behavior 
when an SMS message is received. Second, to speed up manual static analysis, 
we clustered the analysis reports to group similar instances. Third, we manually 
reverse engineered malware samples from each cluster to identify malicious 
behavior.
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F igure 3: Multistep malware analysis procedure
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)
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Dynamic Malware Analysis
We dynamically analyzed the malware samples by running each APK file in an 
emulated Android environment. In particular, we modified the Dalvik Virtual 
Machine of an Android 2.3.4 system to log method calls (including parameters 
and return values) within an executed process.

We aimed to observe malicious behavior when SMS messages were received, 
that is, we were not interested in the overall behavior of an app. We therefore 
triggered this behavior by simulating incoming SMS messages while the 
malware was executed. To filter on the relevant behavior, the analysis reports 
contain only the method calls that followed the SMS injection. This way, we 
highlight code that is responsible for sniffing and stealing SMS messages, while 
we ignore irrelevant code parts (such as third-party libraries).

Likewise, in the case the malware bundles benign code (such as a repacked 
benign app), our analysis report does not contain potentially benign code parts. 
We stopped the dynamic analysis 60 seconds after we injected the SMS message.

The analysis reports consist of tuples with the format:

rline = <cls, method, (p[1], . . . , p[x]), rval>, 

whereas cls represents the class name, method is the method name, rval is the 
return type/value tuple, and p[i] is a list of parameter type/value tuples; rline is 
one line in the report.

Report Clustering
We then used hierarchical clustering to group similar reports in order to speed 
up the manual reverse engineering process. Intuitively, we wanted to group 
samples into a cluster if they had a similar behavior when intercepting an  
SMS message.

We defined the similarity between to samples as the normalized Jaccard 
similarity between two reports A and B:

sim(A, B) = |A ∩ B| / |A ∪ B|,

whereas the reports A and B are interpreted as sets of (unordered) report lines. 
Two report lines are considered equal if the class name, method name, number 
and type of parameters and return types are equal.

We calculated the distances between all malware samples and grouped them to 
one cluster if the distance d = 1 - sim (A, B) is lower than a cutoff threshold of 
40 percent. In other words, two samples were clustered together if they shared 
at least 40 percent of the method calls when receiving an SMS message.

Classification
Given the lack of ground truth for malware labels, we chose to manually assign 
labels to the resulting clusters. We use off-the-shelf Java bytecode decompilers 
such as JD-GUI or Androguard to manually reverse engineer each three 
samples of the 10 largest clusters to classify the malware into families.
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Analysis Results
This section shows the clustering results and gives a detailed analysis of one of 
the analyzed ZitMo samples.

Clustering Results
Clustering of the 207 samples finished in 3 seconds and revealed 21 malware 
clusters and 45 singletons.

We now describe the most prominent malware clusters. Table 1 details full 
clustering and classification results.

Family Command & Control Leaked TAN via # Samples

AndroRAT TCP TCP 16
ZitMo.A SMS HTTP (GET) 13
SpitMo.A SMS SMS 13
Obfake.A n/a SMS 12
SpitMo.C HTTP HTTP (GET) 6
RusSteal n/a SMS 6
Koomer n/a SMS 5
Obfake.B n/a SMS 4
SpitMo.B n/a HTTP (POST) 3
CitMo.A n/a HTTP (GET) 3

Table 1: Real-world malware families targeting 2FA by stealing SMS 
messages
(Source: Dmitrienko, liebchen, Rossow, and Sadeghi, 2014)

AndroRAT, a (formerly open-source) remote administration tool for Android 
devices, forms the largest cluster in our analysis with 16 unique malware 
samples. Attackers use the flexibility of AndroRAT to create custom SMS-
stealing apps, for example, in order to adapt the command and control (C&C) 
network protocol or data leakage channels. 

Next to AndroRAT, the app counterparts of the banking Trojans (ZitMo for 
ZeuS, SpitMo for SpyEye, CitMo for Citadel) are also present in our dataset. 
Except SpitMo.A, these samples leak the contents of SMS messages via HTTP 
to the botmaster of the banking Trojans. Two SpitMo variants have a C&C 
channel that allowed the configuration of the C&C server address or Dropzone 
phone number, respectively.

We further identified four malicious families that forward SMS messages to 
a hard-coded phone number. We labeled a cluster RusSteal, as the malware 
samples specifically intercept TAN messages with Russian contents. Except 
RusSteal, none of the families includes code that is related to specific 
banking Trojans. Instead, the apps blindly steal all SMS messages, usually 
without further filtering, and hide the messages from the smartphone 
user. The apps could thus be coupled interchangeably with any PC-based 
banking Trojan.
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Our analysis shows that malware has already started to target mobile 2FA, 
especially in the case of SMS-based TAN schemes for banks. We highlight 
that we face a global problem, and next to the Russian-specific Trojans that we 
found, incidents in many other countries worldwide have been reported.[11][12][19] 
The emergence of toolkits such as AndroRAT will ease the development of 
malware targeting specific 2FA schemes. 

Until now, these families have largely relied on manual user installation, but 
as we have shown, automated cross-platform infections are possible. This 
motivates further research to foster more secure mobile 2FA schemes.

ZitMo Case Study
We now outline the reverse engineering results of one of the samples to show 
the inner workings of real-world malware in more detail. Here we provide a 
case study on the ZitMo malware samples (we analyzed the ZitMo sample 
with a SHA256 value of ceb54cba2561f62259204c39a31dc204105d358a1a 
10cee37de889332fe6aa27), which are the mobile counterparts of the ZeuS 
banking Trojan.

In order to install ZitMo, the ZeuS Trojan manipulates an online banking 
session such that ZeuS-infected users are asked to enter their mobile phone 
number. Once they do so, the attackers send an SMS message with a link to 
security software, which in fact is a camouflaged ZitMo Trojan. In contrast to 
the attack that we have described, the infection of the mobile device is a largely 
manual process and requires user interaction.

Once ZitMo is installed, it asks the user to enter a verification code, which the 
attackers use to establish a unique mapping between the infected PC and the 
mobile counterpart. From this point on, ZitMo operates in background. As 
ZitMo has registered as a broadcast receiver for SMS messages, it can intercept, 
manipulate, and read all incoming SMS messages.

Whenever an SMS message is received, ZitMo first checks if it contains a 
hidden command that can be used to reconfigure ZitMo. Such messages 
remain hidden to the user: they are not visible in the default messaging app. 
ZitMo embeds the content of all other messages as HTTP request parameters 
and sends the data (including the device ID) to the ZitMo dropzone server. 
Before the data can be forwarded, ZitMo needs to reverse its obfuscation of the 
dropzone URL. If the HTTP request fails, ZitMo stores the message in hidden 
data storage and retries submission at a later stage.

Although using a simple scheme, ZitMo or similar mobile malware have been 
observed to steal tens of millions of dollars from infected users.[19]

Countermeasures and Tradeoffs
Possible defense strategies against attacks on mobile 2FA schemes can be 
divided into two classes: preventive and reactive countermeasures. Preventive 
countermeasures, such as exploitation mitigation, OS-level security extensions,  
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leveraging secure hardware, and using trusted VPN proxies, are applied in 
order to reduce the attack surface, while reactive countermeasures aim to detect 
ongoing attacks in order to mitigate further damage.

Exploitation Mitigation
Our cross-device infection attack relies on exploitation of memory-related 
vulnerability (see the earlier section, “Assumptions”), hence, mitigation 
techniques against runtime exploitations would be an effective countermeasure. 
However, despite more than two decades of research, such flaws still undermine 
security of modern computing platforms.[31] Particularly, while the Write-
XOR-Execute (W^X)[37] security model prevents code injection (enforced 
on Android since 2.3 version), it can be bypassed by code reuse attacks, such 
as ret2libc[38] or return-oriented programming (ROP).[39] Code reuse attacks 
do not require code injection, but rather invoke execution of functions or 
sequences of instructions that already reside in the memory. Because code 
reuse attacks make use of memory addresses to locate instruction sequences to 
be executed during the attack, the mitigation techniques were developed that 
randomize program memory space, making it hard to predict exact addresses 
prior to program execution. For instance, address space layout randomization 
(ASLR)[40], which adds a random offset to loaded code at each program start, is 
available on iOS starting from version 4.3 and was also recently introduced for 
Android (in 4.0 version).

However, ASLR can be bypassed by brute-forcing the offset at runtime[41], 
which generated a new line of research on fine-grained address space 
randomization[42][43][44][45][46][47] (down to instruction level), which makes 
brute-force attacks infeasible. Unfortunately, fine-grained address space 
randomization techniques are ineffective in the presence of memory 
disclosure bugs. Particularly, these bugs can be utilized to disclose memory 
content and build a return-oriented programming (ROP) payload 
dynamically at runtime.[48,49] 

Hence, while the deployed memory mitigation techniques raise the bar for the 
type of cross-device infection we demonstrated, such attacks are still possible, 
even if all protections are enforced. 

OS Level Security Extensions
OS security improves over time and can mitigate some attack classes. With 
respect to the threat of mobile malware targeting 2FA, the first significant 
changes appeared in version 4.2 of Android, where a new system API was 
introduced allowing users to verify and to selectively grant or deny permissions 
requested by applications during application installation. Ideally, the users can 
choose during the installation process what privileges a (potentially malicious) 
app should get, which could defeat some user-installed malware instances  
(see the earlier section “Real-World 2FA Attacks”).

Moreover, Android introduced SELinux[50] in version 4.3—a security 
framework that allows more fine-grained access control to system resources. 
This countermeasure makes it more difficult to perform privilege escalation 
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(also used in our exploits). Further, version 4.3 also introduced authentication 
for the Android Debug Bridge (adb), which can prevent cross-device infections 
via USB connections. 

The most recent Android version 4.4 provides an enhanced message 
handling, which prevents third-party applications from silently receiving 
or sending any SMS. While malware like ZitMo/SpitMo is still able to 
relay received TAN messages, they will remain visible in the phone’s default 
messaging application, giving the user the chance for an immediate reaction, 
such as, for example, to call the bank and cancel the transaction. However, 
this countermeasure will have no effect on our attacks, since we operate at 
a lower level of the software stack, meaning that the application framework 
itself will never receive a suppressed message. It is therefore likely that future 
attacks will follow our concept.

Leveraging Secure Hardware on Mobile Platforms
A more flexible alternative to dedicated hardware tokens is utilizing general 
purpose secure hardware available on mobile devices for OTP protection. 
For instance, ARM processors feature the ARM TrustZone technology[51] 
and Texas Instruments processors have the M-Shield security Extensions.[52] 
Further, platforms may include embedded Secure Elements (SE) (available, for 
example, on NFC-enabled devices) or support removable SEs (such as secure 
memory cards[53] attached to a microSD slot). Finally, SIM cards available on 
most mobile platforms include a secure element. Such secure hardware allows 
establishment of a trusted execution environment (TEE) on the device, which 
can be used to run security-sensitive code to handle authentication secrets 
in isolation from the rest of the system. Developments in this direction are 
solutions for mobile payments like Google Wallet[54] and PayPass.[55]

With the release of version 4.3, Android started to support hardware-supported 
trusted key storage. This means that keys can now be saved in an SE or TEE. 
However, this is not sufficient to prevent attacks on 2FA schemes, because the 
keys can be retrieved from the trusted storage by the application that created 
them. Hence, the adversary could compromise the target application, which 
has the privileges to query the keys. Even if the OTP generation would take 
place within the TEE, an attacker could still impersonate the target application 
in one way or another.

We believe the only way to build a secure 2FA on top of TEE is to shift 
the entire verification process into the TEE. We envision the following 
workflow, which was also described by Rijswijk-Deij[37]: An OTP/TAN 
application is securely deployed into the TEE. On the first start, this 
application would establish a secure connection to the service provider/
bank (based on public key certificate of the service provider) and prove 
that it is executed in a legitimate TEE via remote attestation. Next, the 
application would generate a public/private key pair and send the public 
key to the service provider/bank. To begin a transaction, the user would 
start the application. It would then query the service provider/bank for any 
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transaction, which would need to be authorized. If such an action existed, 
it would be authenticated using the public key of the service provider/
bank and displayed to the user, via a trusted user interface. The user would 
then either allow or deny this action via trusted input. The user’s decision 
would be signed using the generated private key and could be verified by the 
service provider/bank.

A crucial requirement to underlying TEE in such a use case is trusted user 
in-/output, which allows the user to enter security sensitive data (such as 
transaction confirmation) directly into TEE. When such input is mediated by 
the OS, it can be manipulated by malware so that a program executed within 
TEE will confirm a transaction or login attempt without user consciousness. 
However, although some TEEs such as TrustZone can provide trusted user 
in-/output, in current implementations this feature is not supported. Hence, 
solutions built on top of existing TEEs still rely on trusted OS components to 
handle user input. 

Moreover, most available TEEs are not open to third-party developers. 
For instance, secure elements available on SIM cards are controlled by 
network operators, while processor-based TEEs such as ARM TrustZone 
and M-Shield are controlled by phone manufacturers. Typically, only larger 
companies such as Google, Visa, and MasterCard can afford cooperation 
with phone manufacturers, while smaller service providers remain with an 
alternative to cooperate with network operators or use freely programmable 
TEEs such as secure memory cards. However, the solution utilizing SIM-
based secure elements would be limited to customers of a particular network 
operator, while secure memory cards can be used only with devices featuring 
a microSD slot.

Trusted VPN Proxy
Cross-platform infection attacks as discussed earlier can be defeated by 
deploying standard countermeasures against MITM attacks. For example, 
one could enforce HTTPS for every web page request or tunnel HTTP 
over a remote trusted virtual private network (VPN). However, the former 
solution would require changes on all Internet servers currently providing 
HTTP connections (which is infeasible), while the latter would impact 
performance (as in the case where a single VPN proxy serves several 
clients). Moreover, it is not clear which party is trustworthy to host  
such a proxy.

Detection of Suspicious Mobile Apps
SMS-stealing apps exhibit suspicious characteristics or behavior that can 
be detected by defenders. For example, using static analysis, it is possible 
to classify suspicious sets of permissions or to identify receivers for events 
of incoming SMS messages.[56] Similarly, taint tracking helps to detect 
information leakage.[57] However, tainting requires kernel modifications that 
are impractical on normal user smartphones and implicit flows can evade taint 
analysis.[58] An alternative are user space security apps that detect suspicious 
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behavior of the malicious CitMo/SpitMo/ZitMo apps. Such a security app 
could, for instance, identify SMS receivers that consume or forward TAN-
related SMS by observing the receivers’ behavior. Further, by knowing the 
command and control (C&C) channels of mobile malware, one could identify 
(and block) data leakage in network traffic.

However, these security measures require prior knowledge of the attacks and 
C&C obfuscation evades such defenses. Further, our proposed attack cannot 
be detected in user space, as we show that we can steal OTPs before any app 
running in user space has noticed events such as an incoming SMS message. 
Consequently, the aforementioned solutions are not suitable to counter our 
attack, and instead can only detect the existing SMS-stealing Trojans.

Attack Detection in the Network
Our cross-platform infection attack scenario can be detected or even prevented 
at the network layer.

Particularly, mitigation techniques exist against rogue DHCP attacks, such 
as DHCP snooping.[59] For example, the router could stop routing Internet 
traffic if it detects rogue DHCP servers. However, these mechanisms are 
available on advanced multilayer switches only and require configuration 
efforts by network administrators[60], while regular Wi-Fi routers for private 
use remain unprotected. We did not encounter any home router that uses 
such countermeasures. Further, these measures are specific to cross-platform 
infection attacks that rely on rogue DHCP, while ineffective against other 
scenarios, such as those, for example, based on tethering.

Related Work
In this section we survey previous research on mobile 2FA schemes, on attacks 
against SMS-based TAN systems, and on cross-platform infections.  

Mobile 2FA Schemes
Balfanz et al.[10] aim to prevent misuse of the smartcard plugged into the 
computer by malware without user knowledge. They propose replacing the 
smartcard with a trusted handheld device that asks the user for permission 
before performing sensitive operations. Aloul et al.[8,9] utilize a trusted mobile 
device as an OTP generator or as a means to establish OOB communication 
channel to the bank (via SMS). Mannan et al.[20] propose an authentication 
scheme that is tolerant against session hijacking, keylogging, and phishing. 
Their scheme relies on a trusted mobile device to perform security-sensitive 
computations. Starnberger et al.[28] propose an authentication technique 
called QR-TAN that belongs to the class of visual TAN solutions. It requires 
the user to confirm transactions with the trusted mobile device using visual 
QR barcodes. Clarke et al.[13] propose to use a trusted mobile device with a 
camera and OCR as a communication channel to the mobile. The Phoolproof 
phishing prevention solution[24] utilizes a trusted user cell phone in order to 
generate an additional token for online banking authentication.
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All these solutions assume that the user’s personal mobile device is trustworthy. 
However, as we showed in this article, an attacker controlling the user’s PC 
can also infiltrate that user’s mobile device by mounting a cross-platform 
infection attack, which undermines the assumption on trustworthiness  
of the mobile phone.

Attacks on SMS-based TAN Authentication
Mulliner et al.[21] analyze attacks on OTPs sent via SMS and describe how 
smartphone Trojans can intercept SMS-based TANs. They also describe 
countermeasures against their attack, such as dedicated OTP channels that 
cannot be easily intercepted by normal apps. Their attack and countermeasure 
rely on the assumption that an attacker has no root privileges, which we argue 
is not sufficiently secure in the adversary setting nowadays.

Schartner et al.[26] present an attack against SMS-based TAN solutions for the case 
when a single device, the user’s mobile phone, is used for online banking. The 
presented attack scenario is relatively straightforward as the assumption of using a 
single device eliminates challenges such as cross-platform infection or a mapping 
of devices to a single user. Many banks already acknowledge this vulnerability and 
disable TAN-based authentication for customers who use banking apps.

Cross-Platform Infection
The first malware spreading from smartphone to PC was discovered in 2005 
and targeted Symbian OS.[2] Infection occurred as soon as the phone’s memory 
card was plugged into the computer. Another example of cross-platform 
infection from PC to the mobile phone was proof-of-concept malware that 
had been anonymously sent to the Mobile Antivirus Research Association in 
2006.[17][25] The virus affected the Windows desktop and Windows Mobile 
operating systems and spread as soon as it detected a connection using 
Microsoft’s ActiveSync synchronization software. Another well-known  
cross-platform infection attack is a sophisticated worm Stuxnet[22], which 
spreads via USB keys and targets industrial software and equipment. Further, 
Wang et al.[32] investigated phone-to-computer and computer-to-phone attacks 
over USB targeting Android. They report that a sophisticated adversary is able 
to exploit the unprotected physical USB connection between devices in both 
directions. However, their attack relies on additional assumptions, such as 
modifications in the kernel to enable non-default USB drivers on the device, 
and non-default options to be set by the user.

Up to now, most cross-system attacks were observed in public networks, such 
as malicious Wi-Fi access points[4] or ad-hoc peers advertising free public 
Wi-Fi.[3] When a victim connects to such a network, it gets infected and may 
start advertising itself as a free public Wi-Fi to spread. In contrast to our 
scenario, this attack mostly affects Wi-Fi networks in public areas and targets 
devices of other users rather than a second device of the same user. Moreover, 
it requires user interaction to join the discovered Wi-Fi network. Finally, the 
infection does not spread across platforms (from PC to mobile or vice versa), 
but rather affects similar systems.
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Conclusion 
In this article, we studied the security of mobile two-factor authentication 
(2FA) schemes that have received much attention recently and are deployed in 
security-sensitive applications such as online banking and login verification.

Our results show that current mobile 2FA schemes have conceptual 
weaknesses, because adversaries can intercept OTPs or steal private key material 
for OTP generation. We thus see a need for research on more secure mobile 
2FA schemes that can withstand today’s sophisticated adversary models.

As follow-up research, we propose to explore authentication mechanisms 
that use secure hardware on mobile platforms. Although current secure 
hardware has its limitations (for example, no support for a secure user 
interface, or not being freely programmable), novel approaches based 
on secure hardware could eliminate the inherent weaknesses of existing 
authentication schemes. 
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