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ABSTRACT
Amplification DDoS attacks have gained popularity and be-
come a serious threat to Internet participants. However,
little is known about where these attacks originate, and re-
vealing the attack sources is a non-trivial problem due to the
spoofed nature of the traffic. In this paper, we present novel
techniques to uncover the infrastructures behind amplifica-
tion DDoS attacks. We follow a two-step approach to tackle
this challenge: First, we develop a methodology to impose a
fingerprint on scanners that perform the reconnaissance for
amplification attacks that allows us to link subsequent at-
tacks back to the scanner. Our methodology attributes over
58% of attacks to a scanner with a confidence of over 99.9%.
Second, we use Time-to-Live-based trilateration techniques
to map scanners to the actual infrastructures launching the
attacks. Using this technique, we identify 34 networks as be-
ing the source for amplification attacks at 98% certainty.

1. INTRODUCTION
Amplification attacks [26] have become one of the most

popular and dangerous classes of distributed denial-of-service
(DDoS) attacks nowadays. By spoofing the source IP ad-
dress of requests sent to open Internet services (such as
DNS or NTP servers), attackers can amplify traffic and dis-
guise their identity at the same time. Incidents in the re-
cent past have demonstrated that amplification attacks can
cause attack bandwidths in the range of several hundreds of
Gbit/s [25, 32]. Amplification attacks are not only a prob-
lem in terms of bandwidth, but also in terms of frequency
and global scale: During a five-month measurement period
in 2015, Kührer et al. monitored over 1.5 million such at-
tacks (10k per day) that targeted victims in 192 countries.

Unfortunately, due to the IP-spoofing nature of amplifica-
tion attacks, the true origin of the attacks remains hidden.
Consequently, victims do not know whom to contact to stop
the attacks, nor can they file legal complaints against attack
originators. Even worse, from the victim’s perspective, the
third-party reflectors may appear to be the attack origin,
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giving false attribution hints. Despite the need for effective
mechanisms to trace back the origin of amplification attacks,
we still lack usable mechanisms. While there are attempts
to identify spoofing-enabled networks [4, 21], the coverage of
such active probes is limited, and without further evidence
of abuses, the identified parties feel little social pressure to
ban spoofing from their networks (e.g., using BCP38 [24]).

In this work, we tackle this problem and aim to attribute
amplification attacks back to the infrastructures that have
caused them. Whereas application-layer DoS attacks can
be attributed to the origin due to the nature of the TCP
handshake, finding the source of amplification attacks is in-
herently more difficult, given that attackers (i) spoof the IP
addresses and (ii) use reflectors to diversify traffic sources.
IP traceback and similar packet marking schemes have long
been the de facto standard proposal to detect the origin of
spoofed traffic [31, 11, 36, 41, 15, 12, 14], but none of these
designs were ever deployed at scale to allow for global attack
attribution. Still, decades after spoofing attacks were dis-
covered, tracking the origin of attack traffic remains an ad-
hoc process that requires coordination between many ISPs
scattered around the world. The outcome of such tedious
manual attribution processes (if any) comes hours or days
after the traffic originated.

We follow a two-step process to establish an attribution
process that identifies the infrastructures operated by at-
tackers to prepare and launch amplification attacks. In a
first step, we aim to link the reconnaissance and the attack
phases by tracking which scan for amplifiers has resulted
in which attacks. We leverage the fact that scans cannot
forge their source IP address and thus learn about the scan-
ning infrastructures, despite the fact that attack traffic is
spoofed. Our key idea is to offer each scanner a different
set of potential honeypots that it can abuse. This way, we
implicitly encode a secret identifier to the set of honeypots
that any subsequent attack will use, which varies per scan
source. In a second step, we test if the scan infrastructure
is also used to actually launch (and not just to prepare)
the attacks. We follow the observation that similar traffic
sources should have similar “distances” (in terms of hops) to
globally-distributed sensors. Using trilateration, we can link
scanners to attack origins based on hop counts.

With these proposals, we provide a practically-usable at-
tribution methodology for amplification attacks. Our frame-
work fulfills important goals: (i) Our method can work in
real-time; that is, we can attribute attacks on the fly without
noticable delay between attack start and attribution out-
come. (ii) The attribution does not require any coopera-
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tion between ISPs, and thus solves one of the main practical
problems of existing solutions like IP traceback. (iii) Our
method gives probabilistic guarantees that show if—and at
what confidence level—the attribution outcome is correct.

We have deployed our attribution methodology on a snap-
shot of 1,351,852 amplification attacks monitored by honey-
pots during 23 weeks in 2015 and 2016. Our findings show
that we can identify the scanners that were used during the
reconnaissance phase of 58% of all attacks in our data set.
Further analyses show that only 20 scanners are responsible
for nearly 50% of the attacks. Using our hop-based trilatera-
tion process, we reveal that 22% of the attacks were actually
launched from scan infrastructures, for which we have per-
fect IP, network and geographical attribution information.
We report on the distribution of attack sources and reveal
black sheep networks that cause massive spoofing attacks.

To summarize, our contributions are as follows:
• We present a novel honeypot-based technique, selec-

tive response, that enables us to assign a fingerprint
to scanners during the reconnaissance for amplifica-
tion DDoS attacks and give confidence guarantees for
subsequent attribution.
• We evaluate our technique on a set of 1,531,852 attacks

recorded by our honeypot, of which we can link 785,285
back to their corresponding scanner with a confidence
of 99.9% or higher.
• We leverage the TTL field of the IPv4 header to com-

pare the location of scanners to origins of attacks, after
evaluating our methodology on data collected by RIPE
Atlas probes.
• We find that for 22% of all attacks, the scanner linked

to the attacks is also the source of the attack with 95%
confidence.

The remainder of this paper is structured as follows. In
Section 2, we define our threat model, discuss the ethical
implications of our work, and describe the data used in this
paper in Section 3. Section 4 introduces a novel honeypot-
based technique to assign identifiers to systems that scan
for amplifiers. We evaluate this technique in Section 5. In
Section 6, we measure if the infrastructure used to scan for
amplifiers is identical to the infrastructure used to launch
amplification DDoS attacks. After reviewing our initial as-
sumptions in Section 7 and providing an overview of related
work in Section 8, we conclude with Section 9.

2. BACKGROUND
In this section, we will define the threat model this paper

considers and discuss the ethical implications of our work.

2.1 Threat Model
The focus of this paper is on amplification DDoS attacks.

Before defining our threat model, we first give a short de-
scription of this type of attack. The goal of an amplifica-
tion attack is to render a system or network unusable by
flooding the target’s network with a huge amount of traffic,
eventually leading to network congestion. To this end, an at-
tacker can leverage amplification vectors in various network
protocols by which Internet-facing servers (such as DNS or
NTP) will send many packets towards the target. Our threat
model is therefore comprised of at least three parties: The
attacker, the victim, and a set of amplifiers.

In an attack, the attacker will send requests carrying a
spoofed IP header to innocent servers (amplifiers). These

amplifiers will then (unknowingly) direct their responses to-
wards the victim, given that the victim’s IP is specified as
the request source in the spoofed header. Thereby, an am-
plifier will be acting as a “reflector”, effectively hiding the
attacker’s IP address from the victim. Due to various am-
plification vectors in the service implementations, the size
of the responses will be multiple times larger than the ini-
tial request sent by the attacker. This leads to a bandwith
amplification, as the incoming bandwidth of traffic at the
victim’s system will be much higher than the one sent by
the attacker.

Several protocols have been identified to be amplification-
prone [26], with amplification factors (ratio between response
and request size) ranging from 5 to 4000, and misconfigured
systems and support for legacy options lead to a plethora
of potential amplifiers. Finding these amplifiers is a vital
step in attack reconnaissance, and is typically performed by
scanning, i.e., sending requests to every address in a given
range, and recording the answers. Therefore, we include this
additional fourth party of a scanner to our threat model.

While attackers could potentially leverage botnets to launch
amplification attacks, previous work documented that the
vast majority of amplification attacks stem from a single
origin [20], which also coincides with our findings. In the
following, we will thus assume that attackers use only a sin-
gle system to launch their attacks.

We will further assume that scanners do not spoof their
source addresses when performing a scan. While techniques
to perform scans using spoofed addresses are known for TCP
(e.g.“idle scan” [27]), no similar techniques are known for
UDP. Since all known amplification DDoS attacks are UDP-
based, this is a valid assumption.

2.2 Ethical Considerations
The data sets used in this paper were collected leveraging

AmpPot [20], a honeypot for DDoS amplification, which
works by emulating a server for vulnerable protocols and
thereby becoming one of the amplifiers used in attacks. De-
ployment of such a honeypot pose a challenge from an ethi-
cal point of view: By design, an amplification honeypot will
also act as an amplifier in an actual attack and thus send
unwanted traffic towards DDoS victims.

We argue that the contribution towards attack traffic by
our honeypot is negligible and only incurs minimal harm
to the victim’s system. We did not modify the thresholds
chosen by the authors of AmpPot, by which the honeypot
will answer at most three requests per attack. Although we
deployed our honeypot to listen on 48 IPs, as discussed later,
at most 24 of those IPs will send replies towards a victim’s
system. Therefore, our honeypot will reply to at most 72
packets in total, i.e., a few kilobytes at most. Taking into
account that these attacks usually flood a victim’s system
with traffic in the order of several Gbit/s, we conclude that
the contribution of our honeypot is negligible.

In addition, we offered attack victims a method to opt out
from our measurements. During the course of our exper-
iments, we received three complaints that we immediately
answered describing our experimental setup, but none of the
complainers asked to opt out. We refer the interested reader
to a more detailed ethical discussion in [20].

Finally, please note that our (non-US) legislation and uni-
versity system does not require nor offer IRB approvals, and
hence, we also could not request such an approval.



3. DATASET
Our data was collected using AmpPot [20] by Krämer

et al., a honeypot for DDoS amplfication attacks. Amp-
Pot emulates a server offering seven UDP-based protocols
which are known to be abused, namely QOTD, CharGen, DNS,
NTP, RIPv1, MSSQL, and SSDP. For incoming packets, Amp-
Pot will record all header fields as well as some protocol-
specific information from the packet’s payload. Due to the
vast amount of traffic in a DDoS attack, a sampling approach
is employed: Once a source exceeds 100 packets within one
hour, packets from this source will only be recorded with
a probability of 1/100. In order not to contribute to DDoS
amplification attacks and to keep the harm on DDoS vic-
tims minimal, AmpPot will stop sending responses after the
third packet for sources exceeding 1 packet per minute. We
use the same conservative definition of an attack as Krämer
et al., who define an attack as a stream of at least 100 consec-
utive packets from the same source to the same port without
gaps longer than one hour. Further details may be found
in [20]. We leveraged AmpPot in two ways:

First, to attribute attacks to scanners, we extended Amp-
Pot in that it only selectively replies to requests. The basic
idea behind this is that every scanner will see a different
set of honeypots, which will become a distinctive feature
for attribution. We provide an in-depth description of this
technique in Section 4. We deployed our modified AmpPot
version on Nov. 25th, 2015.

Second, the authors of AmpPot granted us access to data
they collected from 11 honeypots, which were deployed in
late 2014 and have been operated since then. Combining
their data sets with ours allowed us to examine whether
scans and attacks were launched from the same infrastruc-
ture by comparing TTL values (cf. Section 6).

We base our results on data collected between November
25th 2015 and May 1st 2015 (exclusive). Within this time
our modified AmpPot version observed 1,351,852 attacks,
1,254,102 of which were also recorded by the secondary data
sets contributed by the AmpPot authors.

4. SELECTIVE RESPONSE
In this section, we describe the idea that our honeypots

selectively respond depending on the scanner origin—a fun-
damental technique that allows for attack attribution.

4.1 Intuition
Launching amplification attacks requires prior knowledge

of a set of servers that can be abused as amplifiers during the
attack. Finding such servers is commonly achieved through
scanning, i.e., sending a query to every IP in a certain range,
and recording which IPs send back a reply. Since nowadays
scanning the entire IPv4 address space is feasible in a rea-
sonable amount of time even from a single machine [13, 16],
we assumed that in most cases the chosen amplifier set was
based on the scan result(s) from a single scan system. Note
that we will verify this assumption in later analyses.

The main goal of this work is to correlate scan events with
amplification attacks. We therefore follow the idea that ev-
ery scanner will find a different (ideally unique) subset of
our deployed honeypots. We influence the scan result in
such a way that we can re-identify the scanner once its scan
result (the set of amplifiers) is used in subsequent amplifi-
cation attacks. Our approach ensures that within a network
segment under our control, every scanner finds a different

set of potential amplifiers. That is, we launch honeypots
on all IP addresses on that segment, but only selectively re-
spond to a scanner-derived and therefore unique subset of IP
addresses. If our assumption on single-source scans was cor-
rect, this would mean that attacks based on different scans
would also use different amplifier sets.

4.2 Implementation
Technically, we implemented the selective response scheme

as follows. We fix a fraction α of the network that re-
sponds to a scan, so that every scanner that performs a full
scan on the network of size N would see replies from α ·N
hosts. In order to maximize the number of possible combi-
nations

(
N
αN

)
, we set α = 1/2, i.e., respond with exactly half

of the honeypots, and remain “quiet” with the other half.
To select the αN IP addresses from the network, we com-

pute a hash over the source IP address (i.e., an identifier for
the scanner), the protocol, the base of the network, and a
secret key (string). We added the secret key such that an
attacker cannot precompute the set of responding honeypots
based on our (otherwise deterministic) hash function. The
resulting hash is then used to derive a permutation of the
N IP addresses in the network. From this permutation, the
first αN addresses are selected as responding honeypots.

Our selective response honeypot uses three /28 networks,
which gives a total of 48 static IPs distributed over three
networks with 16 IP addresses each. Due to the split over
three distinct /28 networks, we decided to perform the selec-
tion per subnet. Separating the networks into three indepen-
dent ranges has the advantage that we can even attribute
scanners that scanned only one of the networks. Although
this separation reduces the number of possible combinations

from
(
48
24

)
≈ 3.2×1013 to

(
16
8

)3 ≈ 2.1×1012, it is still two or-
ders of magnitude larger than the number of IPv4 addresses,
i.e., it is very likely that every scanner will be assigned a
unique set of 24 amplifiers.

5. ATTRIBUTING ATTACKS TO SCANS

5.1 Methodology
The basic idea of our attribution is simple yet effective.

For every attack we monitor, we inspect the set of honey-
pots that were abused for this attack. Typically, attack-
ers leverage multiple amplifiers at the same time, and often
also multiple of our honeypots are abused for the same at-
tack. Figure 1 shows the cumulated percentage of attacks
(y-axis) that have an attack set of at least a given size (x-
axis). Over 95% of all attacks use at least four honeypots;
80% use at least 10 of our honeypots simultaneously.

Remember that the amplifier set greatly depends on the
scan prior to the attack, for which our selective response
scheme has introduced artificial entropy. From the set of
honeypots abused in an attack, we therefore aim to derive
which scanner has discovered these very same honeypots.

Technically, for every IP of our honeypot, we maintain a
set of all sources that discovered this IP as an amplifier, i.e.,
sent a packet to this IP and got back a response. We denote
those sources as being aware of the corresponding IP. Since
we cannot perfectly distinguish attacks from scans, we will
consider every source that contacted our honeypot, which
explicitly includes victims of attacks.

Upon attributing an attack, we first extract the set of
IPs used as amplifiers in this attack. Conjecturing that the
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Figure 1: Percentages of attacks (y-axis) that use at
least the given number of honeypots (x-axis)

honeypot IP aware sources
10.0.0.1 {169.254.0.10, 192.168.2.100, 198.18.3.24}
10.0.0.2 {169.254.0.10, 172.16.5.27, 198.18.3.24}
10.0.0.3 {192.168.2.100, 172.16.5.27, 198.18.3.24}
10.0.0.4 {169.254.0.10, 172.16.5.27, 192.168.2.100}

Table 1: Example honeypots and aware scanners

scanner behind this attack must have scanned all of these
IPs and received a reply, it must be contained in the set of
aware sources for each of them. We can therefore find the
scanner by building the intersection of these sets.

Since neither maintaining the list of aware sources nor
computing a set intersection is computationally expensive,
our methodology can also be applied in real-time, i.e., once
an attack is detected, the result of the attribution can be
obtained without any noticeable delay.

Consider the toy example in Table 1 that lists the set of
aware sources for 4 honeypots. Assume that we observe an
attack using honeypot IPs 10.0.0.1, 10.0.0.3, and 10.0.0.4.
We can then find the potential scanner in the following
way: As 10.0.0.1 is contained in the attack set, the scanner
should be one of {169.254.0.10, 192.168.2.100, 198.18.3.24}.
Since 10.0.0.3 is contained as well, we can narrow this down
to {192.168.2.100, 198.18.3.24}, because 169.254.0.10 is not
aware of 10.0.0.3. We can likewise exclude 198.18.3.24, as it
is not aware of 10.0.0.4. This leaves only {192.168.2.100} as
a potential scanner behind the attack.

Mapping scanners this way can result in three cases:

1. Zero candidates If the set of candidates is empty,
then no single scanner was aware of this set of ampli-
fiers. We will call such attacks non-attributable. This
can occur for multiple reasons:

Firstly, it could be that the attack is based on data
from multiple scans, in which case the combined am-
plifier set is likely distinct from the sets found by other
scanners. This is especially true for attacks that use
more than αN = 8 IP addresses per honeypot subnet,
as a single scanner can only find up to eight amplifiers
in each /28 network.

Secondly, due to the threshold of 100 packets that de-
termines an attack, a scan can also be mistaken for
an attack. If a scanner scans all of our 48 IPs, it can
easily exceed the threshold by sending a little over 2

packets per IP. This happens, e.g., for scanners that
start with a full scan (i.e., a single packet per IP ad-
dress) and then verify each responding IP address by
sending additional packets.

Thirdly, because AmpPot considers an attack to have
ended only if the packet-rate drops below 100/hour
for one hour, two attacks targeting the same source in
quick succession can be aggregated into a single attack.

Although we could neither observe nor refute the first
scenario, we have observed both the second and third
scenarios in our data.

2. Exactly one candidate. If the set of candidates con-
tains exactly one candidate, only a single scanner is
aware of this set of amplifiers. We will consider this
as a potential attribution. However, since we cannot
exclude that the set of amplifiers was chosen by other
means (e.g., combining data from multiple scans), we
compute a confidence for this attribution. The com-
puted confidence gives an indication of how likely it
is that this attribution is correct. We give a detailed
explanation of the confidence in Section 5.2.

3. More than one candidate. If the set of candi-
dates contains multiple candidates, multiple scanners
are aware of this set of amplifiers. We will call such
attacks non-unique. This case occurs if the set of cho-
sen amplifiers is relatively small and multiple scanners
got responses from those IPs during their scans.

In this case, we will refine the candidate set by find-
ing scanner-to-victim relations in the set of candidates.
That is, if both A and B are contained in the set
of candidates, but have previously observed an attack
against B which we could attribute to A, we will re-
move B from the set of candidates. This is based on
the assumption that victims of DDoS attacks will most
likely not act as scanners for DDoS attacks themselves,
and even if they did, the set of amplifiers found would
still be based on A’s scan.

5.2 Confidence
Even if an attack can uniquely be attributed to an attack

(case 2), it is unclear how confident this mapping is. In
an ideal world, a scanner would scan all of our 48 IPs and
subsequent attacks would use the full reply set of 24 IPs.
Since the full reply set is unique per scanner, this would
allow for a perfect attribution. However, in practice, several
things impede this ideal-world assumption. For example,
scanners might not query all 48 IP addresses. Even if they
did, attackers could select a random subset of the found
IP addresses to use in attacks. Worse, attackers might not
base their attacks on the results of only a single scanner,
but rather combine scan results from multiple sources. This
raises the question whether our attribution is actually robust
under such real-world conditions.

Our approach to answer this question is to define a confi-
dence that expresses how likely is that our attribution result
is actually correct, based on the following two sets. We will
call the set of IP addresses that were queried by a scanner
the query set Q, and refer to the set of IP addresses that
replied as the reply set R. Since the reply set is determined
using a hash function, which we assume to generate uni-



formly distributed values, we can consider the distribution
of reply sets to be uniform as well.

We then analyze the probability with which we would
falsely accuse a scanner of being responsible for an attack.
The intuition behind this is as follows: Assuming that a
given attack was not based on the reply set of a single scan-
ner, what is the probability that any of the scanners still
matches this attack by chance? That is, what is the prob-
ability we falsely accuse a scanner? If this probability is
sufficiently small, we can conclude that—if we can attribute
this attack to a scanner—this attribution is correct.

Formally, assume an attack that uses the IPs A = A1 ∪
A2 ∪ A3, where Ai is the set of IPs from the ith subnet.
We are now interested in the probability that a scanner that
scanned a superset of A also gets replies from all IPs in
A, i.e., Pr [A ⊆ R | A ⊆ Q]. In each /28 subnet, the reply
set the scanner observes is a subset of one out of

(
16
8

)
sets.

Out of these,
(
16−|Ai|
8−|Ai|

)
are supersets of Ai (since the Ai IPs

from the attack are fixed, a scanner could potentially receive
responses from 8−|Ai| out of the remaining 16−|Ai|). Thus,
assuming a uniform distribution of reply sets, it holds that

Pr [Ai ⊆ R | A ⊆ Q] =

(
16−|Ai|
8−|Ai|

)(
16
8

)
Therefore, the total probability that a scanner that scanned
a superset of A also got replies from all IPs in A is

p = Pr [A ⊆ R | A ⊆ Q] =

(
16−|A1|
8−|A1|

)(
16
8

) ·

(
16−|A2|
8−|A2|

)(
16
8

) ·

(
16−|A3|
8−|A3|

)(
16
8

)
From this individual probability for a single scanner we

can now derive a probability for any scanner in our dataset.
The probability that any of the S scanners that scanned a
superset of A got replies from all IPs in A follows the “at-
least-once” semantics and is

1− (1− p)S

Put differently, if we can attribute the attack to a scanner,
our confidence that this attribution is correct is

(1− p)S

For example, assume an attack that uses 5 IPs from the
first, 4 IPs from the second, and 6 IPs from the third subnet
respectively, i.e., |A1| = 5, |A2| = 4, |A3| = 6. A single
scanner then has probability

p =

(
16−5
8−5

)(
16
8

) · (16−4
8−4

)(
16
8

) · (16−6
8−6

)(
16
8

) =
165 · 495 · 45

12, 8703

=
3, 675, 375

2, 131, 746, 903, 000
≈ 0.0001742%

of receiving responses from this precise attack set during its
scan. If at the time of the attack we had had contact with
200 scanners that scanned our entire network, the probabil-
ity that any of them found this precise attack set is thus

1− (1− p)S = 1−
(

1− 165 · 495 · 45

12, 8703

)200

≈ 0.03448%.

Consequently, if we find a scanner that matches this attack,
in 99.966% of all cases this does not happen by chance, and

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

attacks

SSDP

RIPv1

NTP

DNS

CharGen

Total

attributable non-unique non-attributable

Figure 2: Attribution results per protocol

hence for such an attack we have a confidence of 99.966%
that our attribution is correct.

Obviously, a larger set A will lead to a smaller probability,
implying a higher confidence.

5.3 Experimental Results
We will now turn to the results of our attribution process

using the dataset described in Section 3.
Figure 2 shows the percentages of attacks that were marked

as attributable, non-unique, and non-attributable, respectively.
Percentages are given both overall and per protocol. The
absolute numbers for each category are given in Table 2, as
well as attribution results for different levels of confidence.
Since the QOTD and MSSQL protocols only account for a neg-
ligible number of attacks (1368, ≈ 0.1%), we will omit these
protocols in the following.

5.3.1 Attributable Attacks
Most notably, out of the 1,351,852 attacks that we recorded

at our honeypot, 785,285 (58.09%) could be attributed to a
single scanner with a confidence of 99.9% or higher. This
means that the chance that the attack was not based on the
attributed scanner is less than 1 in 1,000. In fact, 643,956 at-
tacks (47.64%) even have a confidence of 99.999% or higher,
i.e., the chance of a false attribution is less than 1 in 100,000.

Surprisingly, our results are not homogeneous among dif-
ferent protocols. This can be seen in Figure 4, which depicts
the fraction of attacks that could be attributed for various
levels of confidence. While 74.70% of all CharGen attacks
could be attributed with a confidence of 99.9% or higher,
this holds for only 10.20% of the SSDP-based attacks. This
discrepancy stems from the fact that the number of honey-
pot IPs used strongly varies between protocols, as can be
seen in Figure 3, which shows the distribution of honeypot
IPs used for all protocols. SSDP attacks only use 9.38 IPs on
average, whereas CharGen attacks use 20.66. Consequently,
SSDP also experiences a higher percentage of attacks marked
as non-unique. These discrepancies can be explained by the
global number of amplifiers available on the internet. For
example, Rossow found 3,704,000 servers vulnerable to be
used as SSDP amplifiers, in contrast to only 89,000 for Char-
Gen [26]. In other words, our honeypots are less likely to
be abused as amplifiers for SSDP-based attacks due to the
abundance of available alternative SSDP amplifiers.

5.3.2 Non-Attributable Attacks
Only 34,058 attacks (2.52%) were considered to be non-



QOTD CharGen DNS NTP RIPv1 MSSQL SSDP Total
non-attributable 0 1 440 11 428 18 665 40 25 2 460 34 058 (2.52%)
non-unique 155 24 982 84 491 102 635 191 272 25 046 237 772 (17.59%)
attributable 53 353 300 230 626 426 962 17 253 863 50 965 1 080 022 (79.89%)

conf. > 99% 53 294 913 208 696 342 852 15 163 784 13 989 876 450 (64.83%)
conf. > 99.9% 53 283 665 201 555 279 467 11 928 610 8 007 785 285 (58.09%)
conf. > 99.99% 53 280 514 179 033 233 914 10 395 536 6 260 710 705 (52.57%)
conf. > 99.999% 52 274 617 140 055 214 329 8 441 535 5 927 643 956 (47.64%)

Sum 208 379 722 326 545 548 262 17 484 1 160 78 471 1 351 852 (100.00%)

Table 2: Attribution results and confidence breakdown
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Figure 3: Number of abused honeypots per protocol

attributable. This indicates that our initial assumption, i.e.,
that most attackers use the result of only a single scanner,
is true, as otherwise we would expect to see a much higher
number of attacks without a matching scanner. However,
of these few non-attributable attacks, more than 60% use
more than 24 IPs, the maximum number of amplifiers a
single scanner could have possibly found.

For these attacks that use more than 24 IPs, we can fur-
ther analyze whether they are aggressive scans that exceeded
the conservative threshold and are therefore counted as at-
tacks, or whether they are based on the result of multiple
scanners. Towards this goal we have to answer the following
question: What is the probability of finding x distinct IPs
when combining the results of y scans? Intuitively, while
it is possible to receive answers from all 48 honeypots with
just two scans, it is very unlikely, as this would mean that
the second scanner received answers from exactly those 24
honeypots that did not answer the first scanner. That is, the
likelihood for finding a larger number of x IPs for multiple
scanners y increases with y and decreases with x. Formally,
this can be modeled as an instance of the collector’s problem
with group drawings [38]. In our case, we find that for 80%
of the attacks using more than 24 IPs, the corresponding
attack sets can be found with a probability of over 60% by
combining the results of only two scans. This explains the
non-attributable cases in our data set. Rather than being
aggressive scans, we conclude that most non-attributable at-
tacks have combined data of multiple scanners.

5.3.3 Non-Unique Attacks
Finally, for 237,772 attacks (17.59%), our method found

more than one potential scanner, i.e., multiple scanners got
replies from the corresponding amplifier set, labeling those
attacks as non-unique. Intuitively, this can only happen for
attacks that use a relatively small amplifier set. Indeed, the
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Figure 4: Percentage of attacks that could be at-
tributed (y-axis) vs. level of confidence (x-axis)

average amplifier set size of non-unique attacks is 6.25, i.e.,
about a fourth of the full response set a scanner could find.
In addition, more than 12.88% of the non-unique attacks
have abused a single honeypot only.

5.4 Improving Attribution Confidence
While we attributed a substantial fraction of all attacks to

their scanners with reasonable confidence, for roughly 40%
we either found multiple potential scanners or could only at-
tribute the attack to a scan with low confidence. A question
that naturally arises is whether this is a inherent limita-
tion of our methodology, or whether it can be alleviated by
choosing different parameters, e.g., adjusting the response
ratio or leveraging a larger network segment.

To this end, we analyze the influence of the network size
and response ratio on the probability that the response set
of a scanner is a superset of the attack set. Let N be the
size of the network, α the response ratio, and A the attack
set. Similar to Section 5.2, the probability that a scanner
received replies from all IPs in the attack set is

p = Pr [A ⊆ R | A ⊆ Q] =

(
N−|A|
αN−|A|

)(
N
αN

) .

Since the confidence is computed as (1 − p)S , in order to
improve the attribution confidence, this probability should
be as low as possible.

Interestingly, increasing the network size alone does not
reduce this probability:

lim
N→∞

(
N−|A|
αN−|A|

)(
N
αN

) = α|A|.
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Figure 5: Honeypots used vs. network size

Furthermore, this seems to imply that α should be chosen to
be very small. However, this is only true if |A| was indepent
of N and α. Obviously, the choice of α limits the number of
IPs a single scanner can find by |A| ≤ αN for single scanners.

We therefore analyzed the impact of our network size on
the number of chosen IPs in attacks, i.e., the relation be-
tween |A| and αN . To this end, we computed the distri-
bution of attack sizes, simulating different network sizes by
restricting our dataset to subnets.

We exploited the fact that our data was collected over
three /28 networks by performing this analysis three times:
using data from just a single subnet (16 IPs, 8 responses),
using data from two subnets (32 IPs, 16 responses), and
using data from all three subnets (48 IPs, 24 responses).
Restricting the data on a subnet level ensures that the re-
sponse ratio remains constant, e.g., in the case of 16 IPs, all
scanners that scan the entire network will see 8 responses. If
we had restricted the data to 16 random IPs, some scanners
might have received 0 responses, while others might have
received 16.

Figure 5 shows that the size of the attack sets correlates
with the network size. Although our data is too sparse to
make strong claims, data suggests that the relation between
|A| and αN is linear, with different slopes per protocol.

Assuming a linear relation |A| = βαN , where β is the
protocol-specific slope, we could further investigate the choice
of α: We can rewrite the probability from above as

Pr [A ⊆ R | A ⊆ Q] =

(
(1−βα)N
(1−β)αN

)(
N
αN

)
=

((1− βα)N)!(αN)!

((1− β)αN)!N !
,

which, for β ∈ (0, 1) and fixed N , has a global minimum at

α =
(

(1− β)1−
1/β + β

)−1

.

Interestingly, the optimal response ratio is independent of
the network size, and dependent only on β. Figure 6 shows
the optimal value of α for β ∈ (0, 1). Counter to intuition,
to improve confidence in the case of small attack sets, i.e.,
small β, one should also choose a lower response ratio α.
In other words, the gain in confidence by reducing the re-
sponse ratio α outweighs the gain obtained by increasing the
size of attack sets |A| due to α. Furthermore, we find that
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Figure 6: Optimal response ratio α for β
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the above probability is dominated by the term N ! in the
denominator, and thus increasing the network size N also
leads to a dramatic increase in confidence.

5.5 A Closer Look at Scanners
After uncovering the scanners providing the reconnais-

sance behind the attacks, we analyzed the scanners we found
in more detail. To this end, we will focus on the 785,285 at-
tacks we could link back to scanners with at least 99.9%
confidence. Unless stated otherwise, percentages given in
this subsection will be relative to this set of attacks.

5.5.1 Attacks vs. Scanners
Interestingly, the 785,285 attacks are based on just 286 dif-

ferent scanners. Furthermore, the number of linked attacks
strongly varies per scanner. Figure 7 depicts the cumulative
distribution function (CDF) over those attacks against scan-
ners. As can be seen, a small number of scanners provided
the amplifier sets for the majority of attacks. In the case of
NTP, 90% of the attacks are based on the scans of less than 20
scanners. For CharGen, almost the same fraction of attacks
is based only on the amplifier set found by a single scanner.
This means that a single scanner provided the data for more
than 13% of all attacks that our honeypot recorded.

Surprisingly, the cross-protocol share of scanners is quite
large, i.e., scanners search for amplifiers of multiple proto-
cols. About a quarter of the scanners (26%) scanned and



U
S

N
L

LT P
A IM D
E

F
R

U
A

C
N

B
G

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

attacks

scanner

Figure 8: Percentage of hosted scanners and at-
tributed attacks per country (top 10)

provided amplifier sets for two or more protocols, in a single
case even five protocols.

5.5.2 Scanner Locations
To get a better understanding of the virtual and physi-

cal locations of scanners, we determined each scanner’s au-
tonomous system (AS), as well the country where the scan-
ner’s IP was registered. The geolocation was performed us-
ing the freely available GeoLite2-database by MaxMind [1].
We determined the autonomous system using the whois ser-
vice run by Team Cymru [2]. If the latter returned no result
we conducted a manual lookup by querying the respective
regional Internet registry.

The 286 scanners we identified are located in 87 autonomous
systems, in a long-tail distribution. The most prominent
ten AS contain at least 10 scanners each, the top two even
at least 25. Overall, the top 10 AS host 156 of the scan-
ners (54.55%). This supports anecdotes that a small num-
ber of networks is reponsible for large parts of certain abuse
types (here: scanning).

Even more surprisingly, the 286 scanners are distributed
over only 30 different countries, again in a long-tail distribu-
tion. Figure 8 shows the percentage of scanners located in
and the percentage of attacks attributed to scanners in the
top 10 countries. 3/4 of all scanners are hosted in the US,
the Netherlands, Lithuania, Panama, or Germany, with the
vast majority of them being located in the US. Interestingly,
scanners from the US, the Netherlands, and Lithuania have
an above-average number of attacks attributed to them. In
fact, over 87% of all attacks were attributed to scanners in
those three countries.

6. MAPPING SCAN INFRASTRUCTURES
TO ATTACK INFRASTRUCTURES

Mapping scans to attacks already allowed us to find one
important part of the adversarial infrastructures, namely
those systems that perform Internet-wide scans to prepare
the attacks. In this section, we turn to the infrastructures
that are actually used to perform the attacks. The main
hypothesis that we would like to answer is the following:
Are the systems used to perform scans also used to perform
subsequent attacks? In fact, the technical requirements to
launch attacks are very similar to those needed for Internet-
scale scans. Both parts require a powerful network connec-
tion, and combining the infrastructure would certainly make

attacks easier, as there is no need to exchange information.
In the following, we therefore answer whether attackers ac-
tually reuse their scan infrastructure for launching attacks.

6.1 Methodology
In a DDoS amplification attack, the attacker sends out

requests to a set of amplifiers, but spoofs the packet header
to inject the victim’s IP address. Therefore, from the am-
plifier’s perspective, packets observed during an attack will
only contain the IP address of the victim. Worse, the vic-
tim will only see that traffic is originating from amplifiers.
Finding the actual packet source of amplification attack is
thus a non-trivial problem—irrespective of the perspective.

To tackle this problem, we propose to combine our hon-
eypot data with trilateration techniques to trace back the
packet origin. To this end, we leverage the time-to-live
(TTL) field in the packet header. When sending out packets,
the sender chooses an initially high TTL value, and every
hop along the route to the destination will decrease the TTL
value by one. Thus, the difference between the initial TTL
and the received TTL can be used to estimate the length
of the route between the sender and the receiver. Having
multiple globally-distributed vantage points to take TTL-
based measurements between the source and the honeypots
allows comparing two locations on the network following the
concept of trilateration. In other words, if the locations of
honeypots are wisely distributed, and if attacks abuse many
honeypots at the same time, the honeypots allow measuring
the path lengths between the packet origin and the various
honeypot placements. This will help to approximate the
packet origin: Our hypothesis is that packets from the same
source will have equal (or at least similar) hop distances be-
tween the origin and our honeypots and that the initial TTL
set by the sender is fixed. We back up this hypothesis with
the observation that in 92% of all attacks no honeypot ob-
served more than 3 distinct TTL values. If we thus compare
the hop distances recorded at the honeypots, we can say if
two packets originate in the same system by finding similar
TTL distances—without relying on the IP addresses.

Formally, the TTL recorded at a receiver r is equal to the
initial TTL set by the sender s minus the hop count distance
ds,r, i.e., ttlsr = ttls − dr,s. Assuming that the sender uses a
fixed intial TTL value, the location of a source s is relative to
a set of n receivers r1, . . . , rn that can then be modeled as an
n-dimensional vector capturing the distances ds,ri between
the source and the receivers:

~ds,~r = ttls ·~1− ~ttl
s

~r
ds,r1
ds,r2

...
ds,rn

 = ttls


1
1
...
1

−


ttlsr1
ttlsr2

...
ttlsrn


To compare the location of two sources, we will use the

`1 distance (also known as the Manhattan distance or rec-
tilinear distance). However, this is not trivial, as our model
has so far assumed that the initial TTL set by the sender is
known. While we have observed that most attacks indeed
seem to be based on the maximum (255) as the initial TTL
value, this is not a hard requirement, and might change in
the future. Consequently, we do not assume a specific ini-
tial TTL value. In order to circumvent the missing initial
TTL, we decided to “align” measurements. Consequently,



the `1-distance of two sources s1 and s2 is computed as∥∥∥~ds1,~r − ~ds2,~r

∥∥∥
1

=
∥∥∥~ttls2~r + ~ttl

s1
~r + (ttls1 − ttls2) ·~1

∥∥∥
1

and depends only on the difference between the initial TTL

values. To “align” two measurements ~ttl
s2
~r , ~ttl

s1
~r , we find

t (a value in the range [−255, 255] that “shifts” the TTL
values) that minimizes the following distance between two
TTL vectors: ∥∥∥~ttls2~r + ~ttl

s1
~r + t ·~1

∥∥∥
1
.

Intuitively, the more measurement points (i.e., honeypot
locations) we have, the more accurately we can compute
the TTL-wise distance between two sources. However, re-
call that while our honeypot listens on 48 IP addresses, all
those IP addresses point to the same system and therefore
likely have identical routes. Obviously, a single measure-
ment point is not sufficient to perform true trilateration.
Thankfully, the authors of AmpPot granted us access to
their dataset. They operate 20 honeypots which are located
in multiple continents, and therefore should observe different
routes. Combining their dataset with ours gave us up to 21
measurement points, yielding an entropy that is sufficiently
high to perform trilateration.

6.2 RIPE Atlas Probes
The TTL distance should approximate whether packets

stem from the same source, in that “small” distances hint
at similar packet sources. However, given Internet route
changes and load balancing, it is unclear what distance we
need to tolerate to spot same-origin packets. To validate
whether our TTL metric is indeed meaningful and does not
create false positives, we use a ground truth dataset. To
this end, we leverage the Atlas project by RIPE [3]. In
Atlas, volunteers host probes, small devices used to carry out
measurements on the Internet such as“ping”or“traceroute”.
Measurements can be performed by anyone in exchange for
a certain amount of credits, which can in turn be earned by
hosting probes.

To establish our ground truth, we selected a random set
of 200 probes and instructed them to send packets to the
11 most prominent honeypots. We instructed the honey-
pots to record the TTL values of the traffic coming from
these probes. We were interested in the stability of routes
at two time scales. To measure changes in the hop count in
the order of minutes, we sent three packets at intervals of
two minutes. To measure changes in the order of hours, we
repeated this process five times at intervals of six hours. Af-
ter excluding probes that only sent partial data (or no data
at all), our dataset contained TTL values for 168 distinct
sources for five measurements.

Our random selection of probes guaranteed creating a het-
erogeneous set in terms of probe locations. That is, we had
probes with a large distance from each other, as well as clus-
ters of probes from a small dense region, such as the Amster-
dam area in the Netherlands. This was done to confirm the
intuition that distant sources have very different routes, and
to investigate whether different sources in the same proxim-
ity would be mistaken for one another—assuming that they
share a large amount of routes.

To measure if our trilateration methodology would mis-
takenly flag two different sources as being the same, we com-
puted the minimal `1-distance between every pair of sources.

Additionally, we also investigated the influence of the num-
ber of receivers on the resulting distance. Intuitively, given
that distances sum up, a higher number of receivers could
lead to a higher `1 distance. To this end, we sampled ran-
dom honeypot subsets of size 2, 3, . . . , 11 for each pair of
sources and computed the minimal `1 distance between the
pair using the TTL values recorded by this subset.

From these distances we could then derive thresholds such
that measurements with a distance below the threshold are
likely to stem from the same source, while measurements
with a distance above the threshold are more likely to stem
from different sources. In order to measure the performance
of a given threshold, we turned to two well-known measures
from classification, namely the true positive rate (TPR),
measuring the fraction of sources that could be correctly
re-identified, and the false positive rate (FPR), measuring
the fraction of sources falsely assumed to be identical. More
formally, a TP means that a probe had two measurements
with a distance below the threshold, while a FP corresponds
to two measurements from two different probes that had a
distance below the threshold. However, since every probe
can be confused with every other probe, a global FPR is not
applicable. Instead, we compute the FPR per probe.

We give example curves of the TPR, the average FPR,
and the maximum FPR in Figure 9 for 7, 9, and 11 receivers,
respectively. As expected, a smaller number of receivers in-
creases the FPR. For example, using a threshold of 8 leads
to a FPR of over 50% in the worst case when using just 7
receivers. Increasing the number of receivers to 11 decreases
the FPR to below 5%. Furthermore, smaller thresholds de-
crease the FPR, but also lead to a loss of TPs.

This leads to the question of how the threshold should be
chosen. Since we are mainly interested in learning if a scan-
ner infrastructure is also used to launch attacks, we focus
on the FPR. In a similar fashion to Section 5.2, we can fix
a confidence level and derive a threshold for a given num-
ber of receivers: Since the FPR estimates the probability
with which our method gives false accusations, the comple-
mentary probability of this corresponds to the level of con-
fidence, i.e., the probability that the attribution is correct.
Figure 10 states the thresholds per receiver set size for a
confidence level of 95% and 98%, respectively. For example,
two events observed by a set of 8 honeypots stem from the
same source with 95% confidence if their TTL distance is
below 4; to have a confidence of 98% their distance should
be below 2.

6.3 Malicious Scanners
Knowing which thresholds to choose, we will now apply

our methodology to our dataset of scanners. That is, by
comparing the TTL vectors of a scan event and an attack,
we now answer the question whether the infrastructure used
to perform the scans is also used to launch attacks.

During an attack, packets are typically sent quasi-simultaneously
to the honeypots. This is not necessarily true during scans,
as a scanner may distribute its activities over a longer pe-
riod of time. Therefore, to compare the TTL values between
scanners and their attributed attacks, we computed the dis-
tance between the TTL values observed in the attack and the
chronologically closest scan event for each honeypot. This
minimizes the effects of potential route changes. To account
for the fact that we might see small fluctuations of TTL
values during an attack, we compare the scan against the
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average TTL value measured at a honeypot. Moreover, to
stay consistent with the parameters of our Atlas-based mea-
surements, we also limited the analysis to attacks that took
place within 24 hours before or after a scan. Although this
might sound like a strict limit, it excludes only six out of
the 286 scanners (2%) we identified.

Under the assumption that the true distribution of scan
and attack infrastructure is somewhat similar to the distri-
bution of our Atlas probes1, the thresholds found in the pre-
vious section are still applicable here. Using those thresholds
we find that with confidence of 95% or more, 44 of the 286
scanners are presumably also launching attacks, 34 of them
even with a confidence of 98% or higher. Furthermore, since
these 34 scanners have been found responsible for 293,478
of the attacks with a confidence of 99.9% or higher, we con-
clude that our methodology successfully uncovered the true
attack infrastructure behind over a third of the attacks for
which we could find a scanner with 99.9% confidence, which
equates to a fifth of all attacks observed at our honeypots.

7. DISCUSSION
Our novel methodologies help to identify infrastructures of

current state-of-the-art attacks, which is significant progress
in terms of finding the origin of amplification attacks. Hav-
ing said this, we will now discuss some of the assumptions of
our methodology and discuss how adversaries might be able
to evade our attribution process in the future.

1The Atlas probes were chosen at random from a globally-
distributed set of systems. Lacking any ground truth on
true attack sources, we had no sound methodology to further
verify or invalidate this assumption.

7.1 Single Scanner
As a primary assumption, we assumed that the amplifier

set used in DDoS amplification attacks is scanned from a sin-
gle public IP. This seemingly strong assumption is backed by
two arguments. First, our results show a very small fraction
(2.52%) of attacks for which no potential scanner could be
found. Were attackers to compile their amplifier sets from
multiple sources, we would expect a much higher number of
attacks marked as non-attributable (see Section 5.3).

Secondly, attackers need to rescan for amplifiers at reg-
ular intervals due to amplifier IP address churn. Kührer
et al. showed that typically less than half of the ampli-
fiers are still reachable a week after the scan [21]. Periodic
scans require a setup capable of scanning the entire IPv4 ad-
dress space and suitable for long-term scan operation. Since
launching large-scale scans violates most hosting providers’
terms of service, we argue that maintaining such scanners
incurs a non-negligible amount of work. Furthermore, when
performing an Internet-wide scan, one would not expect to
achieve a much different result when scanning from another
source. All this combined leads us to the conclusion that at-
tackers are not incentivized to maintain multiple scanners.

Having said this, combining the results of multiple scan-
ners could evade our attribution in its current form. To
tackle this problem, one could increase the network size N
and reduce the response ratio α, such that our selective re-
sponse scheme guarantees even higher entropy and also com-
binations of two or more scanners could be re-identified.

7.2 Initial TTL
When comparing scanner infrastructure to attack infras-

tructure, we assumed that the initial TTL set by the scan-
ner and/or attacker was constant for all packets. This holds
true for packets carrying non-spoofed headers, as the net-
work stack of common operating systems will typically use
a default value (usually one of 64/128/255, depending on
the operating system). But even in the case of attack traffic
we see fixed TTLs for the majority of attacks, in accordance
with the observations made by Krämer et al. [20].

Unfortunately, attackers could evade our infrastructure
comparison by randomizing their initial TTL values. How-
ever, we may be able to average the various TTL values to
tolerate such randomizations, as the average survives ran-
domization. While randomization is thus not an effective
evasion technique, there are smarter ways our TTL-based
methodology can be fooled, such as randomly choosing a
single initial TTL per amplifier.

Worse, an attacker may try to provoke a false attribution
result. Luckily, though, it is virtually impossible for an at-



tacker to choose its initial TTL values such that we would
falsely accuse a scanner of also being an attack source, as
this would require exact knowledge of the locations of and
hop counts to all honeypots.

7.3 Honeypot-Driven Observations
Our selective response methodology assumes that attack-

ers leverage sufficiently many amplifiers in an attack to allow
for the attribution process. Related studies have shown that
literally thousands of amplifiers are involved in attacks [29],
supporting this assumption. However, an attacker may se-
lect amplifiers such that only a few honeypots see any attack
traffic. For example, in our current deployment, an attacker
could limit the number of amplifiers per subnet. Note that
our methodology does not actually require that honeypots
are located in the same subnet. The same scheme could be
applied to honeypots scattered among various providers and
in disjoint subnets, mitigating this problem.

Finally, attackers could aim to identify honeypots run-
ning AmpPot by its behavior and avoid their use. In its
current operational mode, AmpPot can be identified, as
it emulates certain protocols, usually even with a fixed re-
sponse. However, as a countermeasure, one could configure
AmpPot to run in a “proxy mode” that intermediates traffic
between actual service implementations with amplification
vulnerabilities (such as NTP servers). This would make the
honeypot indistinguishable from other amplifiers. Note that
such a stealth mode may also have implications on the rate-
limiting functionality of honeypots, as limiting the traffic
may potentially be another way to identify the honeypot.

8. RELATED WORK
In this section, we discuss existing works in the area of am-

plification attacks and traceback mechanisms. We refer to
general surveys [23, 37] for an overview of DDoS in general.

Amplification DDoS and Booter Analysis: Our work
was motivated by the research field that discusses and mon-
itors amplification attacks. Rossow has identified amplifica-
tion vulnerabilities in 14 UDP-based protocols [26]. Since
then, several other researchers have analyzed booter ser-
vices, which are suspected to be a major source for am-
plification attacks. For example, Santanna et al. analyzed
14 booter services and the attack types they offer [29]. They
also investigated booter“infrastructures”, but focused on the
web front-ends of the booter services—which are decoupled
from the booter attack infrastructure and much easier to re-
place than the infrastructure that we aimed to trace back.
In another paper, Santanna et al. obtained and studied at-
tack logs from 15 booter services [28], revealing insights into
the distribution of attack victims and the booter website
hosters. While fingerprinting the web front-end infrastruc-
tures (up to the CDN) is straightforward, we investigated
the hidden infrastructures that are used to actually per-
form amplification attacks. Karami et al. document this
clear separation between websites and back-end servers [18].
They study the ecosystem of three booter services, show the
difficulty and costs for renting such back-end servers, and
analyze two “spoofing-friendly” hosting providers. However,
none of these studies have investigated ways to identify the
scan and attack infrastructures. In addition, our work is not
limited to booter services, and captures all attack sources.

Closest to our work, Kührer et al. have developed Amp-
Pot, an amplification honeypot that can emulate Internet

services to attract attacks. In their further analysis, the au-
thors also describe early attempts to attribute the scanners
that helped to prepare the attacks. However, their attri-
bution is limited to the scan software (e.g., Zmap [13] or
masscan), while our goal is to track the scan origin. Fur-
thermore, we have significantly extended the AmpPot de-
sign with a novel idea of a probabilistic response scheme,
which is a fundamental enhancement to foster tracebacks.

IP Traceback: Orthogonal to our work, IP traceback
methods have been proposed to find the origin of IP pack-
ets [17]. One approach is to analyze flow telemetry collected
by routers to trace the packet origin [35, 34, 39, 19]. How-
ever, these methods follow the assumption that ISPs collect
and even share flow data—an unlikely scenario in practice.
Another idea is to mark packets, i.e., record the path of
packets as metadata in each IP packet [31, 11]. A näıve
packet marking implementation could add the IP address
of each router on the path to the IP packet (e.g., as an IP
header option). This additional 4B overhead per hop can
be reduced with better encoding schemes [36, 41, 15, 12,
14], by overloading unused IP header fields [31, 36, 10, 40,
7], using probabilistic packet marking schemes [31, 30, 33],
or marking only the attack traffic [22, 6]. If deployed on a
global scale, a combination of amplification honeypots and
IP traceback could perfectly track the origin of spoofed traf-
fic. However, the last two decades have demonstrated that
traceback mechanisms are simply not adopted by providers,
presumably as all schemes require changes to protocols or at
least to router implementations. Furthermore, our method-
ology does not require cooperation between the providers,
nor require changes to IP or router implementations.

Spoofing Detection: A few works tried to identify net-
works that—in general—allow for IP address spoofing [21,
4]. Our follow complementary goals in that we find network
that actually perform spoofing for malicious purposes, and
we propose first steps to attribute attacks back to networks.

9. CONCLUSION
Our novel methodology links scan infrastructures to am-

plification attacks, which is a major breakthrough in the
process to identify the origin of amplification attacks, one of
the major threats on the Internet. We found cases where the
scan infrastructures are also used for attacks, i.e., we could
even pinpoint the attacker down to the infrastructure that
she used to perform the attacks. We have shared our find-
ings with law enforcement agencies (in particular, Europol
and the FBI) and a closed circle of tier-1 network providers
that use our insights on an operational basis. Our output
can be used as forensic evidence both in legal complaints
and in ways to add social pressure against spoofing sources.
Such pressure has led to successful interruptions of other
malicious activities in the past, such as the significant drop
of spam volume after the McColo shutdown in 2008 [8].

Admittedly, attackers may attempt to evade some parts
of our methodology to fly under the radar. We acknowledge
the possibilities for evasion, but still believe that our work is
of great help to resolve the current situation of amplification
sources. In the long run, we will have to seek more concep-
tual solutions to the problem, such as an Internet archi-
tectures that guarantee address authenticity by design (and
thus prevent spoofing) [42], schemes that guarantee band-
width reservations regardless of DDoS attacks [5], or efforts
to close amplification vectors in Internet protocols [21, 9].
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