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Abstract—Botnets are a serious threat to Internet-based ser-
vices and end users. The recent paradigm shift from cen-
tralized to more sophisticated Peer-to-Peer (P2P)-based botnets
introduces new challenges for security researchers. Centralized
botnets can be easily monitored, and once their command and
control server is identified, easily be taken down. However, P2P-
based botnets are much more resilient against such attempts.
To make it worse, botnets like P2P Zeus include additional
countermeasures to make monitoring and crawling more difficult
for the defenders. In this paper, we discuss in detail the
problems of P2P botnet monitoring. As our main contribution,
we introduce the Less Invasive Crawling Algorithm (LICA) for
efficiently crawling unstructured P2P botnets and utilize only
local information. We compare the performance of LICA with
other known crawling methods such as Depth-first and Breadth-
first search. This is achieved by simulating these methods on not
only a real-world botnet dataset, but also on an unstructured
P2P file sharing network dataset. Our analysis results indicate
that LICA significantly outperforms the other known crawling
methods.

I. INTRODUCTION

Many cyber-crimes such as banking fraud, spam, and denial-
of-service are executed via botnets that can encompass more
than hundreds of thousands infected machines all over the
globe. Early botnets utilized the client-server principle, in
which all bots are controlled by a centralized Command-
and-Control Server (C2), e.g., by Internet Relay Chat (IRC)
or Hypertext Transfer Protocol (HTTP) servers. Centralized
botnets are easy to deploy and have a low communication
overhead and latency. However, centralized servers also serve
as a single point of failure that can be easily taken down and
thus endanger the whole botnet.

The paradigm shift of P2P-based botnets, e.g., Storm [1]
and P2P Zeus [2], [3], [4], is a step forward that overcomes
the drawback of centralized botnets. These P2P-based botnets
establish an overlay for communication among the participat-
ing bots instead of relying on a centralized server. Although
a P2P botnet completely relies on potentially unreliable end
systems, i.e., infected machines, the botnet is much more
resilient against attacks on its operation from the outside than
a centralized C2 botnet.

To understand if an attack on a P2P botnet is possible,
it is necessary for the researchers to monitor the botnet.
Information such as the population size and the infected ma-

chines of a botnet can be estimated and identified. Moreover,
the information about the connectivity within the botnet is
required when attempting to disinfect them as well as to plan
a coordinated shutdown or sinkholing of the network [5], [6].

The most common methods to monitor P2P botnets is to
utilize crawlers or to deploy sensor nodes in the botnet [3].
Crawlers are used [3] to obtain snapshots of botnets in graph
representation for further analysis, for disclosing the identity
of participating bots, and to get an estimation of the botnet
size. Alternatively, multiple sensors are deployed that try to
spread the knowledge about each other in the botnet to become
popular and to get contacted by other bots. Although, this
method allows a better approximation of the size of botnets
than with crawlers, the deployment of sensor nodes alter the
connectivity properties within the botnet. Therefore, we focus
on crawlers throughout the remainder of this paper.

Crawling a botnet presumes a reverse-engineered botnet
malware and a seedlist of some bots actively participating
in the botnet. After that, a crawler that follows the botnet
protocol needs to be developed that bootstraps to the botnet
and conducts the actual crawl by iteratively contacting the
available bots.

P2P botnets can be either structured or unstructured. In
structured P2P networks, the overlay is organized into a
specific topology on the basis of a structured ID space that
guarantees efficient lookup functionality. Early P2P botnets
such as the early variants of the Storm botnet [7] utilized
this architecture. However, due to the imposed structure, such
botnets can be crawled efficiently, e.g., by crawlers similar to
the Kademlia crawler of Salah and Strufe [8].

In contrast, crawling unstructured P2P networks is more
challenging as there is no structure that can be exploited for
crawling. This overlay structure is established and maintained
by an internal membership management mechanism, e.g., a
gossiping approach [9], [10]. For that, each node maintains a
neighbor list that contains a small subset of other known nodes.
These lists are shared between nodes upon request to replace
inactive neighbors and thus to ensure overlay connectivity.
A crawler for unstructured P2P botnets can leverage this
exchange of neighbor lists to iteratively request neighbor lists
of participating bots until all nodes are known to the crawler.
However, due to the lack of structure, estimating the network



size or getting to know all peers is much more difficult to
obtain than for structured botnets

In the remainder of this paper, we focus solely on crawling
unstructured P2P botnets and refer to them as P2P botnets and
interchangeably use the terms peer and node with bot.

Crawling a P2P botnet generates a huge amount of activity
between the crawler and the botnet. This might disclose the
crawler and a blacklisting by the botnet can be the result. The
P2P Zeus botnet [4], [3] implements such a countermeasure.
Bots in P2P Zeus ban an IP address permanently, if they
receive more than twelve subsequent requests from a single
host within one minute. Existing crawling approaches known
in P2P botnets are Depth-First Search (DFS) and Breadth-First
Search (BFS). However, these crawling approaches are easily
identifiable as they crawl botnet exhaustively, i.e., all nodes.
As a result, crawling a botnet becomes more difficult. Hence,
to keep crawling such botnets, the crawler need to remain
undetected.

Our main contribution in this paper is the Less Invasive
Crawling Algorithm (LICA) that optimizes the crawling pro-
cess and decreases the crawler interaction with the botnet. For
that, it heuristically approximates a vertex cover, i.e., number
of nodes to be visited to obtain a full view, by presuming only
restricted knowledge about the botnet overlay. We compare the
performance of our algorithm with BFS and DFS crawling
approaches and found that LICA significantly outperforms
them in our experimental settings on two real-world datasets.
Moreover, we also show that the results of LICA are close
to the results of an approximation algorithm for minimum
vertex cover [11] that operates on global knowledge about
the network.

The remainder of this paper is organized as follows. Sec-
tion II discusses the related work in crawling of unstructured
P2P botnets. Section III introduces our LICA algorithm with
a formal model. Section IV evaluates our method on the P2P
Zeus botnet and an unstructured P2P file sharing network,
i.e., Gnutella, dataset. Finally, Section V summarizes our
contribution and describes the future work.

II. RELATED WORK

In this section, we summarize the related work in crawling
techniques and countermeasures against crawling from the
perspective of a botnet. First we discuss existing unstructured
P2P crawling mechanisms, followed by the emergence of anti-
crawling/enumeration botnets. We then describe unavoidable
bias results in crawls before summarizing this section.

1) Existing Crawling Mechanisms: The following mecha-
nisms have been utilized in crawling either real unstructured
P2P botnets or file sharing systems. The botnet crawlers im-
plemented either a DFS or BFS-based queue implementation
as a node selection strategy.
● Storm Crawler [7]: A BFS-based crawler used for the

infamous Storm botnet that iteratively queries each peer
starting from the seedlist.

● Nugache Crawler [12]: This crawler was used in crawl-
ing the Nugache botnet. It conducts pre-crawls and uti-

lizes those information as an input for their priority-queue
based crawler implementation that prioritize nodes which
have been observed more often available and responding
in the pre-crawls. The priority mechanism is implemented
as a DFS approach.

● P2P Zeus Crawler [3]: This BFS-based crawler is used in
crawling the recent variants of P2P Zeus botnet. It starts
the crawling from a seed node and appends undiscovered
nodes at the end of a queue. Crawling is repeated after
all nodes have been crawled.

● Cruiser [13]: This crawler was used to crawl the Gnutella
file sharing network. It prioritizes ultrapeers from the
two-tier design of the Gnutella network and therefore
able to achieve a more accurate representation of the P2P
network. The authors also report of a biased connectivity
among peers which are most likely connected to peers
with higher uptime.

2) Anti-Crawling Techniques: Sinkholing is the process of
strategically invalidating entries in the neighbor list of nodes
in a botnet to be able to contact only a small set of nodes,
i.e., sinkholes. This sinkholing process leveraged the crawling
mechanism to poison the neighbor lists of other nodes in the
network. Recent P2P botnets were sinkholed [5], [3], [14]
using this technique to take them down. Sinkholing renders
the botmaster to loose control of the botnet as the bots are no
longer connected to the overlay.

Along this line, we discuss anti-crawling or anti-
enumeration techniques which aim to make it difficult for the
defenders to enumerate and monitor the botnets. We first look
at work in the area of anti-crawling in theoretical botnets and
then discuss a real-world case scenario.

● RatBot [15]: Yan et al. present a theoretical anti-
enumeration structured P2P botnet based on a DHT that
spoofs a portion of IP addresses to hinder attempts to
enumerate the botnet. This makes the crawling process
difficult due to additional non-responsive nodes during
crawl. It also leads to an overestimation of the botnet
size, which may be a preferred feature for the botmasters,
e.g., publicity in media or among potential clients. Nev-
ertheless, crawling mechanisms introduced above may
still work with the presence of the RatBot’s anti-crawling
techniques, although with more biased results.

● P2P Zeus [2], [4]: The recent variants of the P2P Zeus
implement an anti-crawling mechanism that blacklists a
node that frequently requests a neighbor list, i.e., > 12
subsequent crawls within 60 seconds. This defense mech-
anism is in place locally for each bot. Furthermore, the
botnet also limits the number of entries in the neighbor
list that are being returned for every request to 10 entries.
Therefore, although crawling is still possible, it requires
more effort and longer crawling pauses, i.e., sleep time,
to obtain a snapshot of the botnet.

3) Networks Noise: Some researchers that have conducted
crawls on botnets have also shared the lessons learned and
problems that arise during these crawls [12], [16].



Kanich et al. first addressed the problems [16] in crawling
the Storm botnet. Their major finding is that other crawling
and sinkholing attempts bias the crawling results. Hence, it
is necessary to sanitize the crawled data from such attempts.
Furthermore, Rajab et al. presented the challenges [17] in
measuring the botnet size due to factors such as high churn
rates. This is supported by Stutzbach et al. [13] that reported
crawler efficiency as the most crucial requirement to get an
accurate picture of the botnet in the presence of node churn.

We believe that from the details of the work presented,
existing crawlers are not efficient enough by just utilizing
BFS or DFS methods to crawl the botnets. Recent botnets
like P2P Zeus implement anti-crawling mechanism to prevent
monitoring attempts by introducing blacklisting and restricted
neighbor list size.

For this reason, we need a less invasive monitoring mech-
anism for P2P-based botnets. This new mechanism needs to
crawl fast, while introducing only minimal network activity to
stay undetected.

III. LESS INVASIVE P2P BOTNET MONITORING

Monitoring a P2P botnet can be done by crawling or by
deploying sensor nodes. Although sensor nodes do not require
any active communication once they participate within the
botnet, they introduce a bias to the crawled graphs. As we
intend to monitor the overlay structure of the botnet, we focus
only on the crawling technique in this paper.

Crawling introduces a significant amount of network activity
that is easily observable and may disclose a crawler to the
botnet. For example, current BFS and DFS-based crawling
algorithms need to crawl all possible nodes to provide a
snapshot at any particular time. However, it is possible to
minimize the necessary amount of interaction between crawler
and botnet. The idea behind is to only crawl a subset of all
nodes to obtain a minimum vertex cover, which is a problem
known from graph theory. A vertex cover is a set of vertices
of a graph that has all edges in the graph incident to at least
one vertex of the set. A minimum vertex cover is then the set
of minimum number of vertices that are needed to cover the
entire network. However, this problem is proven to be NP-hard
and all known approximation algorithms require a global view
on the graph.

For this reason, we intend to approximate the minimum
vertex cover during the crawl of a botnet. For that, we try
to identify the stable core of a botnet and to crawl this first,
which is inspired by the work of Stutzbach et al. [13] on the
Gnutella P2P network. Unstructured P2P networks, like the
botnets we observed, maintain their overlay connectivity via
membership management protocols. These protocols ensure
the robustness of the overlay by exchanging fresh information
about active peers in the network. The entry of a stable or an
important peer is frequently shared and will stay longer in the
neighbor list of many other peers.

To exploit this finding, we propose an iterative crawling
method that employs a heuristic to plan the next crawling
steps iteratively and to establish a vertex cover in the botnet.

For that, we first introduce a formal model and subsequently
describe our novel crawling algorithm.

A. Formal Botnet Model

A P2P botnet is a directed graph G ∶= (V,E), where V
is a set of peers in the botnet. All bots follow a membership
management protocol that establishes and maintains neighbor-
hood relationships in the botnet to ensure a connected overlay.
Hence, peers have connections to a subset of other peers in
the overlay. These connections or edges E ⊆ V × V , are
represented as a set of directed edges (u, v) with u, v ∈ V . The
neighborhood relationship, i.e., neighbor list, of a peer v ∈ V
can be defined as NLv = {u∣∀u ∈ V ∶ (v, u) ∈ E,v ≠ u} and
contains the set of all nodes that v has an outgoing connection
to.

The minimum vertex cover in a botnet is then defined as a
set of minimum nodes, Vmin, that has all other nodes in the
network reachable from one or more nodes in the set according
to our formal botnet model as follows:

Vmin = argmin{∣V ′∣ ∣ V ′ ⊆ V ∶ ( ⋃
v∈V ′

NLv) = V }

B. Crawling Algorithm

Although the simplest solution in crawling a botnet is
to iteratively request neighbor lists from all known nodes,
this is neither stealthy nor efficient. Unnecessary activity
of frequently requesting neighbor lists may not only raise
suspicions to the botmasters, but also introduce bias to the
final view if the crawl is not carried out fast enough [13].

A minimum vertex cover would be the optimal solution to
this problem as it would allow to crawl the least amount of
nodes to get a full view on the network. However, the problem
itself is NP-complete and only approximation algorithms that
presume the full view on the graph are known, e.g., the algo-
rithm of Bar-Yehuda [11]. As crawling is performed starting
from one peer and with an iteratively increasing view on the
network by acquiring neighbor lists, we need a heuristic for a
vertex cover that operates with such sparse graph information.

We designed a crawling algorithm for unstructured P2P
botnets that can optimize the coverage of subsequent crawling
steps and thus decreases the overall required number of steps
for crawling a botnet. Hence, we do not intend to conduct
a complete botnet enumeration, but to extend our monitoring
coverage to have the best, i.e., largest, snapshot of a botnet
overlay. We assume that bots in the botnet are all online at
the same time, hence, we ignore diurnal patterns and churn.
Furthermore, we assume that we can receive neighbor lists
(or a random subset thereof) from other bots, so that we
learn either all neighbors or subsets of the neighbors of one
particular peer.

Our Less Invasive Crawling Algorithm (LICA) is described
in Algorithm 1. It does not only aim on crawling efficiency but
is also configurable for an adaption to a specific environment
or a specific botnet via parameters seedpeer, r, w, and t.

The seedpeer is the start node of the crawl. Parameter r
is the maximum number of requests allowed to be sent, i.e.,
subsequent crawling iterations, to any node in the network



Algorithm 1: LICA(seedpeer, r, w, t)

// Initialization
1 Vknown ← seedpeer
2 ccrawl ← 0
3 gain← 0
// Maximum allowed requests (per node)

4 for i = 0, i < r, i = i + 1 do
// Utilize previous crawl

5 Vcrawl ← Vknown

6 Vvisited ← ∅

7 while
Vcrawl ≠ ∅ & (ccrawl mod w ≠ 0 ∣∣ gain ÷w > t) do

// Reset gain if necessary
8 if ccrawl mod w = 0 then
9 gain← 0

// select the next node to crawl
10 Choose u ∈

argmax∀v∈Vcrawl ∑∀w∈Vknown
∣NLw ∣ − ∣NLw − v∣

// Crawl + get neighbor list of u
11 NLu ← crawl(u)

// Update list of visited nodes
12 Vvisited ← Vvisited ∪ {u}

// Update list of nodes to crawl
13 Vcrawl ← (Vcrawl ∪NLu) − Vvisited

14 ccrawl ← ccrawl + 1
// Calculate gain

15 gain← gain + ∣NLu∣ − ∣Vknown ∩NLu∣

// Update visited nodes
16 Vknown ← Vknown ∪NLu

within a particular full crawl. A full crawl ends when all
contactable nodes in the network have been discovered.

The window parameter w determines the number of sub-
sequent requests, for which a gain, e.g., ≥ 0, is calculated.
The gain measures the number of new nodes learned during
a crawling window w. Thus, the gain divided by w requests
gives the learning curve during the crawl which terminates
the algorithm execution when dropping below a threshold t,
≥ 0.0.

LICA utilizes the initial seedpeer for bootstrapping itself
into the botnet overlay. Then, starting with the seedpeer, our
algorithm obtains the neighbor list NLu from u (line 11)
and further extends its knowledge by iteratively requesting
neighbor lists from the discovered peers. For each request sent
by LICA, counter ccrawl is incremented by one.

Upon receiving a neighbor list from u, it is immediately
added to Vvisited (line 12) and the undiscovered peers in the
received entries are added to Vcrawl (line 16) as potential
candidates for the crawl.

Line 10 in the algorithm selects the next candidate for the
crawl. The algorithm goes through all received neighbor lists
of peers in Vknown and ranks all remaining peers in Vcrawl

based on their popularity, i.e., its in-degree or the number of

the occurrences among the neighbor lists of previously crawled
peers. The function argmax returns the most-popular peer,
i.e., highest ranked, as the next candidate to be crawled. In the
event of equally ranked peers, the algorithm randomly chooses
between equally ranked peers.

At every window interval, i.e., after w requests, the algo-
rithm checks the accumulated gain (line 15) within the past
window and terminates the current crawl iteration if the ratio of
the observed gain drops below threshold t (line 7). Depending
on the value of r, LICA may repeat another iteration of
the crawl; however, this time LICA utilizes the information
of previously crawled peers Vknown instead of the seedpeer.
The algorithm terminates when there are no more peers to
be crawled or the number of maximum allowed iterations is
exceeded.

In the next section, we evaluate LICA regarding its crawling
performance and compare it against a BFS and DFS-based
crawling.

IV. EVALUATION

We describe the details of the used datasets and explain our
experimental setup in this section. Furthermore, we present the
evaluation results on the crawling performance of LICA at the
end of this section by answering the following questions:

1) When should a crawling process terminate to avoid
further crawling unnecessary nodes?

2) How can we improve a crawling algorithm’s perfor-
mance by utilizing only local information, e.g, neighbor
lists?

3) How can we measure the efficiency of a crawling
algorithm?

A. Data Sets

We utilized two different real-world unstructured P2P net-
work datasets in the form of directed graphs, i.e., P2P Zeus and
Gnutella, to evaluate the performance of crawling algorithms.

The P2P Zeus dataset used in this evaluation consists of
crawling information collected in approximately five hours
from the P2P Zeus botnet on 25th April 2013. It has been
obtained from previous work in analyzing P2P Zeus [3].
From the initial 1,061,402 edge entries in the database, we
removed 667,704 edge entries that consist of biases that are
already known to us: sinkholed nodes (identified by an out-
degree < 10), sensor nodes (identified by an in-degree > 500),
and duplicated edges. We also note that the sanitizing of the
dataset may not be perfect due to other monitoring activities
of researchers that we were not aware of.

The second dataset is crawl data of the unstructured P2P file
sharing network Gnutella, on August 2002 that we obtained
from the SNAP repository1.

The summary of the datasets is provided in Table I.

1SNAP: http://snap.stanford.edu/data/



Dataset Name P2P Zeus Gnutella
Nodes 82,471 62,586
Nodes (out-degree > 0) 10,794 16,387
Avg. Neighbor List Size 4.6 2.4
Highest Neighbor List Size 97 78
Edges 379,088 147,892
Avg. Clustering Coefficient 0.01934 0.00047
Diameter 11 31
Avg. Path Length 5.2 9.2

TABLE I
GRAPH PROPERTIES OF THE DATASETS.

B. Experimental Setup

We conducted our analysis using Python and the NetworkX
module [18], and implemented all the crawling algorithms,
i.e., LICA, BFS, and DFS, with Python scripts. 50 independent
experiments were executed on each of our analysis and the pre-
sented results were averaged over them. For every iteration of
the experiment, our simulation uniformly chooses a common
seed peer for all the crawling algorithms.

We limit the size of the neighbor lists in our simulation. The
reason behind this is that the datasets used in our experiments
are observations of multiple crawls over some time. As such,
some nodes have accumulated neighbors more than their
allowed limit for a neighbor list, i.e., different neighbors due
to node churn and diurnal effects. Since the neighbor list’s size
of the P2P Zeus botnet is 50 entries, we also limit the size of
the neighbor lists to 50 in our simulation to closely resemble
it’s implementation.

Considering that some nodes in the datasets have more
than 50 neighbors, we shuffle and split the entries of these
nodes into a sequence of chunks, each having a maximum
of 50 entries. For every received neighbor list request from
our implemented crawling algorithms, a node will return a
single chunk from its sequence and repeats the sequence after
returning the last chunk (if queried further). In our simulation,
a full crawl ends when there are no more new peers to crawl. In
addition to that, LICA also ends it’s crawl when the maximum
allowed iterations have exceeded.

First we conduct an analysis to identify the best combination
of values for the parameters w, r, and t based on the P2P Zeus
dataset. Then, we measure the performance of each crawling
algorithm by plotting the ratio of discovered peers in relation
to the number of neighbor list requests sent by the crawling
algorithms.

We also measure the efficiency of each of the crawling
algorithms by the ratio of nodes discovered in dependence
on the number of required crawling steps, i.e., neighbor list
requests. For that, we applied the local-ratio approximation of
minimum vertex cover presented by Bar-Yehuda et al. [11] to
obtain an approximate value of the number of minimum nodes
to be crawled to obtain a snapshot of the botnet graph. The
approximation ratio of this algorithm is 2 − 1

k
, where k is the

smallest integer.
The implementation of this approximation algorithm that is

available in NetworkX operates on undirected graphs. Hence,

we modified it to be applied on directed graphs. In the
remainder of this evaluation we will refer to this algorithm
as Approximative Minimum Vertex Cover (AMVC).

Furthermore, for the clarity of the resulting plots, all algo-
rithms terminate their crawling as soon as 95% (indicated by
the dashed horizontal lines) of nodes in the datasets have been
discovered unless stated otherwise. The reason behind this is
that all crawling algorithms produce very minimal additional
observations towards the end of the crawl, i.e., > 95%. As
such, they shrink the overall resulting plot and therefore are
omitted due to their minimal significance.

C. Evaluation Results

Existing crawling algorithms which are implemented using
BFS or DFS methods to crawl botnets may not be efficient.
The node selection criteria used by both these algorithms is not
based upon any other information except the order the nodes
are stored and processed. Therefore, we conducted a series of
experiments to understand the impact of the node selection
criteria on the crawling performance of LICA.

We first investigated on when to terminate an ongoing crawl-
ing process to avoid too many unnecessary crawling steps.
For that, LICA contains a simple mechanism that checks the
gain after a window w of crawling steps and that terminates
when the gain drops below threshold t during the crawl. As
the algorithm utilizes a learning curve to terminate the crawl,
the algorithm is adjustable by manipulating its parameters.
For example, to overcome the blacklisting mechanism of P2P
Zeus, the r value can be set to 11, i.e., maximum number
of requests that are allowed to be sent to a particular node.
Alternatively, subsequent full crawls can be delayed by 60
seconds. We set the value r to 2 in all our experiments because
we know from our P2P Zeus datasets, that all algorithms need
to request the neighbor lists from any node at most twice, i.e.,
two chunks, to obtain the full neighbor list.

Furthermore, by deciding combinations of values for the
window size w and threshold t, the resulting crawl can be
shaped. For example, the user can specify a high threshold
value, e.g., > 1.0 in combination with a high window size,
e.g., 3000 when they intend to crawl mainly the backbone
nodes. Similarly, when the intention is to crawl as many nodes
as possible, the threshold value can be set to a relatively low
value, e.g., < 0.05 in combination with a low window size,
e.g., 300. We analyzed the effects of different combinations
of promising values on the P2P Zeus dataset with the value
r = 2 as presented in Figure 1(a).

From the analysis, we identified that when the threshold
value t, is low, e.g., 0.1, and with the window value w of
300, a full crawl results in about 94.7% of the entire dataset
known just with about 29,000 sent requests. Meanwhile, the
parameter combination of t = 0.45,w = 1000 obtained a
lower coverage of 93.3% although with 17.4% lesser requests
than the previous combination. However, with an increased
threshold value, e.g., 0.8, and window value w = 2000,
LICA terminates with a coverage of 93.9% although require
additional 1,800 requests than the previous combination.
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Fig. 1. Performance analysis of LICA, BFS, and DFS. (a) The performance of LICA under different combination of parameters. The performance of all
observed crawling algorithms on (b) P2P Zeus and on (c) the Gnutella dataset, measured in the ratio of nodes discovered in dependence on the total number
of requests sent. (d) contains the results of all crawling algorithms on the P2P Zeus dataset without any neighbor list restrictions, plotted by the ratio of nodes
discovered depending on the total number of nodes crawled.

Therefore, we decided that the combination, t = 0.8,w = 2000
is more reasonable to efficiently crawl the P2P Zeus dataset.
Although the criteria in selecting the best combination of
parameters is not straight forward, based on the requirement
of the crawl, we can fine-tune subsequent crawls with more
appropriate parameters.

Next, we investigated on the performance of LICA during
a crawl. It is expected that LICA performs better than BFS
and DFS on both real-world datasets, because we prioritize
popular nodes during the crawling. This expectation is based
on the work of Stutzbach et al. [13], which reports that by
crawling the ultrapeers, i.e., backbone nodes, in the Gnutella
network resulted in a faster and efficient crawl.

The results of our crawl performance analysis is presented
in Figure 1(b) and 1(c). LICA was executed on the P2P Zeus
dataset using the previously chosen parameter combination:
r = 2, t = 0.8, and w = 2000. The crawl performance in

Figure 1(b) indicates a much better performance of LICA in
comparison to the other methods. Note that for the plot of
LICA, we left out the points in which we have results from
less than 16 individual experiments as we cannot obtain a
confidence interval from that. LICA requires 25,780 requests
to obtain a 93.86% coverage of the peers in the botnet. This is
about 27% of the total requests made by the BFS algorithm to
obtain a 95.0% coverage. DFS performed worst in this analysis
by requiring additional 400% requests than needed by LICA.

The convergence point between the BFS and DFS algorithm
indicates the point where all known nodes during the initial
crawl have been crawled. The growth that is observed after
that point is from new nodes discovered from re-requesting
neighbor lists from previously known nodes, i.e., subsequent
chunks of their neighbor list. This convergence behavior is
not observed in LICA because it terminates the crawling when
the observed gain drops below the threshold, and the gain



immediately picks up in the subsequent crawl iteration.
It is worth mentioning that by reducing the size of the

neighbor lists or the returned subset of the list, the effort
to crawl the entire network increases proportionally for all
crawling algorithms. We verified this by running another set of
experiment with a returned neighbor list of size 30 and r = 3.
The observed performance between the crawling algorithms
remain relatively similar to the the results in Figure 1(b). Due
to space constraints, we omit the results in this paper.

We repeated the experiment on the Gnutella dataset using
the following parameter combination: r = 2, w = 400, and
t = 0.3. However, the performance gain of LICA for Gnutella
dataset in Figure 1(c) is not as significant as in the P2P Zeus
dataset. We further investigated this behavior and identified
that the diameter of this dataset is very high, i.e., 31, with
an average path length of 9.2. Moreover, nodes in the dataset
have a rather low average size of the neighbor list, e.g., 2.4
entries. Hence, due to the inherent network structure in this
dataset, the gain is much lower, as all crawlers need to go
through almost every available nodes to obtain a full view.
Nevertheless, the performance of LICA is better compared
to the other two algorithms as presented in Figure 1(c). For
example, with 31,941 requests, LICA discovered 75.5% of
nodes that is about 7% more than the other two algorithms.

Finally, we wanted to measure the efficiency of the crawling
algorithms. For this purpose, we compared the performance
of all the three crawling algorithms on the P2P Zeus dataset
with respect to the AMVC value in Figure 1(d). For simplicity,
we modified our simulation settings to allow all available
neighbors of a node to be returned in a single request and
disabled the crawl termination mechanism in LICA. As such,
the purpose of this particular analysis is to find out how many
nodes need to be crawled in order to obtain the full view of
the network.

Based on this analysis, we managed to demonstrate by
heuristic, that LICA outperforms other methods in performing
closer to the calculated AMVC value, 14,050 nodes. At the
point of the AMVC, LICA discovered a total of 90.6% nodes
in comparison with BFS that only discovered 54.1% or DFS
with 38.2% of nodes. This is interesting because we man-
aged to show that by crawling and prioritizing the ’popular’
peers, we are actually crawling the backbone of the network.
This corresponds to the finding of Stutzbach et al. [13] that
reports the existence of biased connectivity with peers with
higher uptime, i.e., popular nodes in our work. This allowed
LICA to exploit the feature and outperform existing crawling
algorithms.

V. CONCLUSION

In this work, we discussed the needs of an efficient crawling
algorithm to monitor modern P2P botnets in the rise of botnets
that implement anti-crawling mechanisms. We also demon-
strated that using local information that we can obtain, the bot-
net crawling performance can be further improved compared to
current existing methods. We compared the performance of our
method on two different real-world data sets. The performance

of our method indicated that a botnet crawling conducted using
our LICA method yields better performance and much closer
to the approximation of a minimum vertex cover. The results of
our work can be utilized as a stepping stone to monitor these
resilient P2P botnets and analyze the next steps to strategically
take them down. As a future work, we look into implementing
LICA in a real P2P botnet crawler to measure its performance.
Moreover, we would also like to extend our current method
to analyze other botnet datasets.
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