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Abstract—With the general availability of closed-source soft-
ware for various CPU architectures, there is a need to identify
security-critical vulnerabilities at the binary level to perform
a vulnerability assessment. Unfortunately, existing bug finding
methods fall short in that they i) require source code, ii) only work
on a single architecture (typically x86), or iii) rely on dynamic
analysis, which is inherently difficult for embedded devices.

In this paper, we propose a system to derive bug signatures
for known bugs. We then use these signatures to find bugs in
binaries that have been deployed on different CPU architectures
(e.g., x86 vs. MIPS). The variety of CPU architectures imposes
many challenges, such as the incomparability of instruction set
architectures between the CPU models. We solve this by first
translating the binary code to an intermediate representation,
resulting in assignment formulas with input and output variables.
We then sample concrete inputs to observe the I/O behavior of
basic blocks, which grasps their semantics. Finally, we use the
I/O behavior to find code parts that behave similarly to the bug
signature, effectively revealing code parts that contain the bug.

We have designed and implemented a tool for cross-
architecture bug search in executables. Our prototype currently
supports three instruction set architectures (x86, ARM, and
MIPS) and can find vulnerabilities in buggy binary code for
any of these architectures. We show that we can find Heartbleed
vulnerabilities, regardless of the underlying software instruction
set. Similarly, we apply our method to find backdoors in closed-
source firmware images of MIPS- and ARM-based routers.

I. INTRODUCTION

Software bugs still constitute one of the largest security
threats today. Critical software vulnerabilities such as memory
corruptions remain prevalent in both open-source and closed-
source software [40]. The National Vulnerability Databases
listed 5,186 security-critical vulnerabilities in 2013, and trends
from recent years suggest a steady number of software
bugs. However, even though vulnerabilities are known, it
is oftentimes challenging to tell which particular software
is vulnerable, especially if software libraries are re-used by
larger software projects [15]. Worse, state-of-the-art tools have
deficits in handling libraries that become part of software that
has been deployed on a variety of architectures.

The problem of finding bugs at the source code level has
been addressed by a lot of researchers [14], [17], [18], [22],
[42]. Professional code verification tools ensure source code
quality and a number of automated bug finding proposals
analyze source code to find security-critical bugs. However,
access to source code is quite a rigid assumption when
it comes to finding bugs. A lot of prominent software is
available only as a binary, either as commercial software (e.g.,

MS Office) or as freely-available closed-source software
(e.g., Adobe Reader or Flash). Software on embedded
devices, typically referred to as firmware, is usually closed-
source, implemented in an unsafe language, and re-uses (po-
tentially vulnerable) code from third-party projects [8], [37].
What is more, closed-source software may be even stripped,
i.e., the binaries do not contain symbol information like
function names or data types. Thus, we seek a solution to find
vulnerabilities at the binary level without requiring symbols.
This alone makes the process to find bugs significantly more
challenging than source code-level approaches.

Another challenge in finding bugs at the binary level is
that more and more software is cross-compiled for various
CPU architectures. That is, even if the bug is known for one
particular architecture (say Intel x86), finding a bug stemming
from the same source code, but used in a project for another
architecture (say ARM), poses various difficulties: Binaries
from varying architectures differ in instruction sets, function
offsets and function calling conventions, to name but a few
significant complications. This is problematic for many kinds
of cross-compiled software. For example, hardware vendors
use the same code base to compile firmware for differ-
ent devices (e.g., home routers, cameras, VoIP phones) that
operate on varying CPU architectures. Similarly, prominent
software such as MS Office, Adobe Reader or Flash,
is already available for multiple platforms and architectures,
most recently with the increase of ARM-based Windows RT
deployments. The problem is compounded if cross-compiled
software includes well-known, but vulnerable libraries. For
instance, after discovery of the Heartbleed bug in OpenSSL,
there is a growing list of affected closed-source software
running on various architectures (x86, MIPS, ARM, PowerPC,
etc.). Currently, though, there is no practical way to automat-
ically find such known bugs in binaries belonging to different
architectures. Users have to resort to manual inspection or have
to rely on the vendors to inspect the closed-source code for
bugs. However, as the Heartbleed case illustrated once more,
vendors are not particularly quick to evaluate security risks in
their products. Oftentimes this leaves open a significant time
window during which security-critical bugs can be exploited.
Worse, there is no guarantee that end-of-life hardware or
firmware from vendors that have disappeared over time is ever
inspected for well-known bugs, although such systems are still
widely used by both consumers and industry.

In this paper, we address this problem and make the first



step towards finding vulnerabilities in binary software and
across multiple architectures. As the cross-architecture feature
complicates the bug search quite a bit, we focus on the
following use case: Once a bug is known—in any binary
software compiled to a supported architecture—we aim to
identify equally vulnerable parts in other binaries, which were
possibly compiled for other architectures. That is, we use a bug
signature that spans a vulnerable function (or parts of it) to find
similar bug instances. While this limits our work to re-finding
similar, previously documented instances of bug classes, ex-
actly this problem has evolved to a daily use case in the era
of cross-compiled code. For example, Heartbleed affected a
tremendous number of closed-source software products from
multiple vendors across all CPU architectures. The list of
affected software is still growing and there is no automated
way to identify vulnerable software versions. Similarly, it was
discovered that several Linksys and Netgear devices included a
backdoor in their firmware, but users had to trust the vendors to
name all affected products. Our goal is to provide a mechanism
to assist a human analyst in such scenarios, where the analyst
defines a bug signature once and then searches for parts in
other software binaries—from and to any architecture—that
contain a similar bug.

To this end, we propose a mechanism that uses a unified
representation of binaries so that we can compare binaries
across different instruction sets (i.e., across architectures).
That is, we first lift binary code for any architecture—we
currently support Intel x86, ARM and MIPS due to their high
popularity—to an intermediate representation (IR). Even in
this IR, we are bound to binary information lacking symbols
and data types. Based on this IR code, we thus aim to grasp the
semantics of the binary at a basic block level. In particular,
we build assignment formulas for each basic block, which
capture the basic block’s behavior in terms of input and output
variables. An input variable is any input that influences the
output variables, such as CPU registers or memory content.
We then sample random input variables to monitor their effects
on the output variables. This analysis results in a list of
input/output (I/O) pairs per assignment formula, which capture
the actual semantics of a basic block. Although the syntax of
similar code is quite different for the various CPU architectures
(even in the intermediate representation), we can use such
semantics to compare basic blocks across ISAs.

We use the semantic representation to find the bug signature
in other arbitrary software that is potentially vulnerable to the
bug defined in the signature. The bug signature can be derived
automatically from a known vulnerable binary program or
from source code, and may simply represent the entire vul-
nerable function. To preserve performance, we use MinHash
to significantly reduce the number of comparisons between
I/O pairs to find suitable basic block matches. Lastly, once
basic block matches have been found, we propose an algorithm
that leverages the control flow graph (CFG) to expand our
search to the entire bug signature. As output, our system lists
functions ordered by their similarity to the bug signature. This
gives analysts a compact overview of potentially vulnerable

functions in the analyzed binary.
To evaluate our approach, we first systematically test how

well our system performs when matching equivalent func-
tions across binaries that have been compiled for different
architectures, with different compilers, and using varying
optimization levels. The evaluation shows that our system is
accurate in matching functions with only a few false positives.
For example, we show that our approach ranks 61% of the
OpenSSL ARM functions in a MIPS-based OpenSSL binary
among the 10 closest function matches. Second, we evaluate
our system in various real-world use cases, for which we
extracted the vendor-compiled software binaries from firmware
in order to search for real-world vulnerabilities. Our system
finds the Heartbleed bug in 21 out of 24 tested combinations
of software programs across the three supported architectures.
Further, we find vulnerable RouterOS firmware and confirm
backdoors in Netgear devices. Note that during all of these
real-world tests we did not have access to the source code
and thus used the actual software binaries contained in the
corresponding firmware—highlighting that our design even
tolerates deviations in build environments.

We obtained these results under certain assumptions, e.g.,
that the binaries have not been obfuscated. However, we also
show that our system can tolerate (more common) binary
disturbances to some extent, such as compiler optimizations
or differences in build environments—in addition to tackling
most of the previously-unsolved discrepancies in comparing
code between ISAs from various architectures.

Furthermore, our method can be used with sub-function
granularity, which is vital for bug search. While function-
wise matching techniques (like BLEX [11], BinDiff [10] or
Exposé [32]) could find bugs in functions that have been
cloned, it is often useful to find re-used parts of a vulnerable
function in other functions, instead of finding mere clones.

The uses of our proposed system are manifold; in this work
we focus on identifying unpatched bug duplicates. However,
we are not limited to doing so in the same program (i. e., the
same binary), and do not even require that the target binary is
compiled for the same architecture. For example, companies
that run closed-source software from vendors that do not sup-
port particular software/devices anymore (e.g., if the product
is beyond end-of-life or if the vendor goes out of business)
could independently verify, whether common bugs are present.
Similarly, if bugs in widely used libraries become known (such
as Heartbleed, recently), CERTs can find affected products in
a short amount of time. Our concept can also be applied to
search for known backdoors in closed-source applications. We
envision more use cases of our system, such as binary diffing,
searching for software copyright infringement in binaries, or
revealing code sharing across binaries.
In summary, our four main contributions are as follows:
• We lift ARM, x86 and MIPS code to unified RISC-like

expressions that capture I/O syntax per basic block.
• We introduce a sampling and MinHashing engine to cre-

ate compact and cheaply-comparable semantic summaries
of basic blocks—the basis of our bug search.



• We define a metric to compare code structures like sub-
CFGs and functions, which enables us to search for bug
signatures in arbitrary software binaries.

• We empirically demonstrate the viability of our approach
for multiple real-world vulnerabilities spanning software
across three supported architectures.

II. APPROACH

We now outline our general approach for cross-architecture
bug search in binary executables. Our goal is to use a code
similarity metric to find code locations that are similar to code
containing a bug. The assumption here is that similar code of-
ten stems from slightly modified shared code, which typically
also shares the same bug. We are particularly interested in
finding bugs that are security-critical. Our method, though,
supports finding many types of bugs, and we thus use the
words bug and vulnerability interchangeably.

A. Workflow

We use a bug signature, i.e., a piece of binary code
that resembles a specific instance of a vulnerability class,
to find possible vulnerabilities in another binary program
(target program). To this end, we first derive a bug signature
(Section II-B). Then, we transform both the bug signature
and the target program into an intermediate representation
(Section II-C) and build compact basic block-wise semantic
hashes (Section II-D). All these transformations are a one-time
process for both the bug signature and the target program.

Figure 1 illustrates this process for the instructions ldrb
(ARM), lbu (MIPS) and lodsb (x86). First, we convert
these assembly instructions to an intermediate representation,
which results in a list of assignment formulas that we represent
as easy-to-parse S-Expressions (symbolic expressions). The
assignment formulas detail how an output variable is influ-
enced by its inputs. For example, the first line in the x86 case
represents that the first eight bits of the address where ESI
points to are stored in register AL. The number of inputs differs
for each formula (e.g., no input for the terminator, one input
for the AL, v0 and R3 variables, or two inputs for the ESI
variable). Next, using random concrete input values (dashed
box), we sample the input/output behavior of these formulas
(we illustrate sampling of the first formula only). For example,
in the x86 formula of ESI, the concrete inputs (5, 1) result
in an output of 6. In the last step, we build semantic hashes
over the I/O pairs, which allow us to efficiently compare the
I/O behavior of basic blocks.

In the search phase, we use the transformed bug signature
(i.e., its representation as a graph of assignment formulas) to
identify bugs in the similarly-transformed binaries. That is,
we look for promising matching candidates for all individual
basic blocks of the bug signature in the target program
(Section II-E). For each such candidate pair, we apply a
CFG-driven, greedy, but locally-optimal broadening algorithm.
The algorithm expands the initial match with additional basic
blocks from the bug signature as well as the target program
(Section II-F). The algorithm then computes the similarity

between bug signature and target programs, returning a list
of code locations ordered by their similarity to the signature.
In the following, we explain these steps in more detail.

B. Bug Signatures

A bug signature is just like normal binary code: It consists
of basic blocks and possible control-flow transitions between
these basic blocks. Therefore, any selection of basic blocks
can, in principle, be used as a bug signature. For example,
the bug signature could represent an entire buggy function,
limiting the manual effort to define the bug signature in
more detail. However, users of our system should refine the
bug signatures to smaller code parts, which cover only the
bug and its relevant context. Note that our approach only
requires a discriminative piece of code—typically, the context
in which a bug occurs is so distinctive that our approach
is completely independent from the vulnerability type. We
have successfully evaluated buffer overflows, logical bugs and
software backdoors.

However, it is quite hard to estimate how the signature size
influences results in general: An additional non-characteristic
basic block, which is essential to the structure of the vulner-
ability and discriminative in its context, will likely improve
results, while a characteristic basic block, which is non-
essential to the vulnerability, may lead to false positives.

While our target is to search bugs in binaries (i.e., without
access to source code), we do not necessarily have to limit
ourselves to use binary information only when deriving the bug
signature. For example, consider the typical scenario that a bug
in open-source software is publicized. This usually means that
the buggy lines of code are known, which we can leverage to
define the bug signature. Thus, we can use debug information
to automatically find the basic blocks that correspond to the
vulnerable function part, effectively deriving bug signatures
with almost no manual effort.

Note that even if the buggy source code is available, source
code-based bug finding techniques still cannot be applied if
the vulnerable code became part of closed-source applications.
In practice, buggy open-source code is re-used for closed-
source applications, for which only the binary representation
is available. For instance, vulnerabilities in the open-source
software projects BusyBox and OpenSSL became part of
many proprietary and closed-source firmware images.

C. Unifying Cross-Architecture Instruction Sets

Obviously, the instruction sets of architectures like x86,
ARM, and MIPS are quite distinct. Aside from the instruction
set, the calling conventions, the set of general- and special-
purpose CPU registers, and the memory access strategies (e.g.,
load/store on RISC as opposed to CISC architectures like x86)
also vary for each architecture. Even if binaries stem from
the same source code, the resulting binary output cannot be
compared easily if the binaries were compiled for different
architectures. To illustrate this, Figure 2 shows a small code
snippet that has been compiled for three architectures. It can
be seen that not only the calling conventions and memory



ldrb r3, [r1]

add  r1, r1, 1

cmp  r3, #0

strb r3, [r2]

bne  loc_A

lbu   v0, 0(a1)

addiu a1, 1

bnez  v0, loc_A

sb    v0, 0(v)

lodsb

stosb

test al, al

jnz short loc_A
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(=R3 (concat #x00 ((extract 7 0) (IND r1))))

(=R1 (bvadd R1 1)

...

(Terminator jump +2BB)

(=v0 (concat #x00 ((extract 7 0) (IND a1))))

(=a1 (bvadd a1 1)

...

(Terminator jump +3BB)

(=AL ((extract 7 0) (IND ESI)))

(=ESI (bvadd ESI DF))

...

(Terminator jump +2BB)
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Fig. 1: Transformation phase: Three binaries (ARM, MIPS, x86) are first unified from assembly to the intermediate
representation (S-Expressions), as illustrated for the first instruction (ldrb, lbu and lodsb). Then, using the same random
concrete inputs among all formulas, we determine the input/output behavior of the expressions, resulting in a set of I/O pairs.
In the last step, we create semantic hashes over these I/O pairs in order to efficiently compare basic blocks.

s t a t i c vo id g e t l o c a l t i m e ( s t r u c t tm ∗ptm ) {
t i m e t t i m e r ;
t ime (& t i m e r ) ;
l o c a l t i m e r (& t i m e r , ptm ) ; }

x86 assembly

t i m e r = dword ptr −0Ch
ptm = eax ; tm ∗
push e s i
mov e s i , ptm
push ebx
sub esp , 20h
l e a ebx , [ esp +28h+ t i m e r ]
push ebx
c a l l t ime
ptm = e s i ; tm ∗
pop ecx
pop eax
push ptm
push ebx
c a l l l o c a l t i m e r
add esp , 24h
pop ebx
pop ptm
r e t n

ARM assembly

t i m e r = −0x14
ptm = R0 ; tm ∗
STMFD SP ! , {R4,R5,LR}
SUB SP, SP, #0xC
ADD R4, SP, # 0x18+ t i m e r
MOV R5, ptm
MOV p tm, R4
ptm = R5 ; tm ∗
BL t ime
MOV R0, R4
MOV R1, ptm
BL l o c a l t i m e r
ADD SP, SP, #0xC
LDMFD SP ! , {R4,ptm,LR}
BX LR

MIPS assembly

l i $gp , 0xFFF9C
addu $gp , $ t 9
addiu $sp , −0x30
sw $ra , 0x30+ var 8 ( $sp )
sw $s1 , 0x30+var C ( $sp )
sw $s0 , 0x30+ var 10 ( $sp )
sw $gp , 0x30+ var 20 ( $sp )
l a $t9 , t ime
addiu $s0 , $sp , 0x30+ var 18
move $s1 , $a0
j a l r $ t 9 ; t ime
move $a0 , $s0
lw $gp , 0x30+ var 20 ( $sp )
move $a0 , $s0
l a $t9 , l o c a l t i m e r
nop
j a l r $ t 9 ; l o c a l t i m e r
move $a1 , $s1
lw $gp , 0x30+ var 20 ( $sp )
lw $ra , 0x30+ var 8 ( $sp )
lw $s1 , 0x30+var C ( $sp )
lw $s0 , 0x30+ var 10 ( $sp )
j r $ r a
addiu $sp , 0x30

Fig. 2: BusyBox v1.21.1: C source of get_localtime and the corresponding IDA disassemblies.

accesses (e.g., load/store), but also the general assembly com-
plexity/length, deviate between the architectures. Thus, at first,
it seems hard to compare binary code across architectures.

To bridge this gap, a key step in our approach is to unify
the binary code of different architectures. To this end, we first
utilize an off-the-shelf disassembler to extract the structure of
the binary code (such as functions, basic blocks, and control
flow graphs). We then transform the complex instructions into
simple, RISC-like and unified instructions. We do so for two
reasons: First, it abstracts from architecture-specific artifacts
and facilitates symbolic normalization. Second, later stages
can now utilize this architecture-independent instruction set
and therefore only have to be implemented once.

D. Extracting Semantics via Sampling

The unified instruction set would allow us to compare
individual binary instructions syntactically. This already is a
big advantage over comparing different instruction sets from

multiple architectures. However, using the IR only solves some
of the issues when comparing binary code from different
architectures. It is also common to observe differences in
calling conventions, register uses or memory accesses, which
even influence the syntax of a unified representation. However,
the semantics of the binary code will remain similar, even if
source code is compiled for different architectures.

Therefore, in the next step, we aim to extract the semantics
of the binary code. We aggregate the computational steps for
each output variable of a basic block, which gives us precise
assignment formulas for each output register or output memory
location (see Figure 1, second column).

Special care needs to be taken for control flow transfers.
By definition, every basic block ends with a terminator in-
struction, which determines the next basic block in the control
flow. These terminators can have one successor (unconditional
jumps, returns) or two successors (conditional jumps). To



abstract from concrete addresses, we define successors via
symbolic function names (which, in our evaluation, are only
available for imported functions, such as from libc), or
via the number of basic blocks to skip. For example, the
true case of a conditional jump may jump three basic blocks
ahead. However, neither successors nor branch conditions are
structurally different from other assignment formulas and are
therefore handled in the same way. Note that indirect jumps,
like returns, indeed have only one successor formula, even
though this formula can be evaluated to multiple targets.

We extract the formulas per basic block, as we have ob-
served that the control flow graph and the basic block margins
typically remain equivalent (or at least similar) in cross-
compiled code. Note that this assumption may not always
hold for heavily obfuscated code or if compilers use varying
code optimization strategies. However, as we will show in
Section IV-B, our metric works quite well in scenarios with
different architectures, different compilers, or different opti-
mization levels. Section IV-C further shows that the metric can
even find bugs in firmware of real-life, commercial devices.

For normalization purposes and simpler computation in
later steps, we simplify the assignment formulas by passing
them through a theorem prover. We therefore aggregate the
RISC-like instructions and map them to the theorem prover’s
structure. The theorem prover then returns S-Expressions, i.e.,
an easy-to-parse data structure that represents the formulas and
allows for arbitrary computations.

At this point, we have precise descriptions of the effect of
a basic block on the programs state: The assignment formulas
show an abstract representation of what operations the basic
block will perform given symbolic input values (see Figure 1).
However, these descriptions are still purely syntactic: Showing
that two basic blocks are equivalent based on these formulas
is—if possible at all—computationally intensive.

To achieve our goal of bug finding, we relax the condition
to find code equivalence and use a metric that measures code
similarity. Ideally, such a similarity metric gradually scales
from 0.0 (distinct code) to 1.0 (equivalent code). We build
such a metric upon sampling, which was proposed by Jin et.
al [19]. First, we generate random and concrete values, which
we use as inputs for the formulas of each basic block. Then,
we observe the outputs of the formulas. Such point-wise eval-
uations capture the semantics of the performed computation.
Arguably, the semantics are not captured perfectly, as not all
possible values are used as input, but it is still reasonable to
assume that similar computations have more input/output pairs
in common than dissimilar ones.

In order to grasp the semantics of the formulas equally well,
we have to devise a smart sampling strategy. Intuitively, the
more input variables a formula has, the larger the number
of sampled input variables should be. For example, the I/O-
behavior of a := b + 1 can be grasped with fewer samples
than the interplay of variables in a := b∗ c+d. Also, we have
to make the samples introduce some robustness to the order
of variables to make sure that, e. g., a := b− c and a := c− b
can be recognized as similar. We show in Section III-B how

we solved this issue by using permutations of the inputs.
Similarly, some formulas are prone to be misrepresented by

the I/O pairs. For example, a := b == 0 will be false for
all inputs but 0, such that it is semantically mostly similar to
a := 2 ∗ b + 3 == 5 (false for all inputs but 1). In such
cases, we would have to find special “magic values” with a
theorem prover, which is computationally expensive. Luckily,
these cases usually occur only in branch conditions, which is
why we chose to ignore formulas of branch conditions so that
our similarity score is not biased.

E. Similarity Metric via Semantic Hashes

Evaluating a large number of sampled inputs results in
many I/O pairs which represent the semantics of the evaluated
basic blocks. The higher the number of shared, equal I/O
pairs between two basic blocks, the higher is the similarity
of these basic blocks. Thus, one could directly compare the
I/O pair-sets of two basic blocks, e. g. with the Jaccard index,
to measure their similarity. However, the large number of I/O
pairs and basic blocks would cause such a naı̈ve approach to
scale badly, as it requires many I/O pair comparisons.

We tackle this bottleneck with locally-sensitive hashes. A
LSH has the property that the similarity of the hash reflects the
similarity of the hashed object. We chose to use MinHash [5],
which satisfies the LSH properties and at the same time
converges against the Jaccard index. In essence, MinHash
computes a semantic hash over a basic block by incorporating
the I/O pairs. Comparing two basic blocks now only requires
comparing their semantic hashes instead of comparing the
sets of I/O pairs, which significantly reduces the required
complexity to measure the similarity of two basic blocks.

To compensate for statistical over-representation of the
I/O pairs of multi-variable formulas and the property of the
MinHash to operate on sets rather than multi-sets, we made
two improvements to the straightforward application of the
MinHashing algorithm (see Section III-C for details).

F. Comparing Larger Binary Structures

We have described how we capture the semantic represen-
tation of a basic block and presented a computationally cheap
metric to compare two basic blocks. This metric allows us
to perform the first step of comparing code: finding pairs of
similar basic blocks, which are candidates for a signature-
spanning match. In order to match an entire bug signature,
though, comparing individual basic blocks is not sufficient.
The code structure is quite relevant for some bug classes,
e.g., for integer or buffer overflows, in which bound checks
are either implemented or not. Bug signatures thus typically
consist of multiple basic blocks and capture the structure of
the code in terms of a CFG.

We therefore expand the comparison of individual basic
blocks with an algorithm that aims to identify the entire bug
signature. First, we pick a basic block from the bug signature
and compare it to all basic blocks from the program in ques-
tion. Then, we use an algorithm called Best Hit Broadening
(BHB), which broadens the initial candidate match along the



Fig. 3: From left to right: VEX-IR of a load byte instruction
on x86-32, ARM and MIPS.

CFGs in the bug signature and target program. BHB operates
in a greedy, but locally-optimal manner, until the match spans
the entire signature. BHB is then repeated for all basic blocks
in the bug signature, resulting in a list of functions ordered by
their similarity to the signature (see Section III-D for details).

III. IMPLEMENTATION

In this section, we discuss some of the specific details for
the proof-of-concept implementation of our approach.

A. Common Ground: The IR Stage

Our first design choice was which processor architectures
we wanted to support. We chose ARM, x86 and MIPS (little-
and big endian), because these architectures are pervasive
and run many closed-source applications. x86 and ARM are
nowadays the most widespread architectures. We additionally
chose MIPS, as it is popular for embedded devices and is one
of the few architectures that stay close to the RISC principles.
We decided against x86-64, as it uses a different register size,
which—without further adaptations of our approach—would
inevitably lead to mismatches. In principle, other architectures
can be supported and incompatibilities can be solved with
some engineering effort.

First, we use IDA Pro [16] to extract a disassembly and
the control-flow graph from the binary. Arguably, the resulting
disassembly is not perfect [3], but it proved to be sufficient
for our purposes.

Our next step was finding a common representation for
binary code, which required us to consider the peculiarities
of each architecture. For this purpose we utilize the VEX-
IR, which is the RISC-like intermediate representation for the
popular Valgrind toolkit. One of the benefits of VEX is its
support for many architectures. VEX translates from binary to
IR, but was never designed for static analysis, as it is part of a
dynamic binary instrumentation framework. We refrain from
discussing the VEX-IR in detail and refer the reader to the
Valgrind documentation [39].

We leveraged pyvex [36], a Python framework with bind-
ings to the VEX-IR, and used its API to process the IR
statically. We feed binary opcodes to pyvex and dismantle
the VEX statements into our own data structures. These
data structures are used to aggregate and map the VEX-IR
into semantically equivalent expressions for the Z3 theorem
prover [27]. The theorem prover’s sole purpose is to simplify
and normalize expressions. Additionally, it conveniently re-
turns S-Expressions.

Architecture S-Expressions

ARM (= R3 (concat #x000000 ((extract 7 0) (Indirection R1))))
(= R1 (bvadd R1 1)) (= PC #x000d816c)

MIPS (= v0 (concat #x000000 ((extract 7 0) (Indirection a1))))
(= a1 (bvadd a1 1)) (= PC #x0041ada0)

x86 (= AL ((extract 7 0) (Indirection ESI)))
(= ESI (bvadd ESI DF)) (= EIP #x080579be)

Fig. 4: S-Expressions

Figure 3 shows the first instruction of the second basic
block of BusyBox’ strcpy on each architecture. The load
byte instruction operates implicitly (x86) or explicitly (ARM,
MIPS) on registers. As all semantics of an instruction are made
explicit and transformed to RISC operations, they serve as a
convenient ground to deduce their effects and incorporate them
into S-Expressions. The numbers in GET and PUT are offsets
in a shadow table that are mapped to specific registers. In
the x86 example in Figure 3, t1 = GET:I32(32) loads
the content of register ESI into the temporary variable t1.
Note that we also obtain some type information from VEX.
The statement Put(8) = t8 writes the value from t8 into
AL. The last line sets the EIP register to the next instruction.
Figure 4 shows the corresponding mappings to S-Expressions,
where we can clearly see emerging similarity. The constructed
assignment formulas are now ready for sampling basic blocks.

It is worth mentioning that we observed some unreliable
behavior for floating point operations when using VEX stati-
cally. In fact, we identified only a few dozen floating point
operations in the binaries that we analyzed, so we chose
to replace floating point operations with NOPs. Again, it is
only a matter of engineering to add support for floating point
operations to our system.

B. Extracting Semantics: Sampling

To grasp the semantic I/O behavior of a basic block,
we evaluate its formulas point-wise. More specifically, we
generate random vectors with elements from the range
[−1000, 1000] and use them as input for the formulas. We
found this space to be sufficiently large to avoid random output
collisions, while being small enough to cover many possible
inputs in the sample range. We used the same sequence of
random input to evaluate all formulas to ensure that the com-
puted outputs are comparable across formulas. We then create
unique I/O pair representations by computing a 64-bit CRC
checksum of the input length, the inputs, and the output value.
Recall that our approach needs to work across architectures. As
register names do not match across architectures, we exclude
the output’s name from the checksum computation.

We have to ensure that our sampling is robust to the order
of variables. Let us consider the two formulas a := b − c
and a := c − b. They are the same, apart from the order
of variables. However, with the inputs (b = 1, c = 2) and
(b = 3, c = 5) their respective outputs are (−1,−2) and (1, 2),
which does not reflect the similarity of the formulas. We thus
also use the permutations as inputs, which are (b = 2, c =
1) and (b = 5, c = 3) in the example, and will obtain the



outputs (−1,−2, 1, 2) and (1, 2,−1,−2), at which point we
can observe similarity. Regardless of the CPU architecture,
most basic blocks’ formulas have only a few input variables.
In BusyBox, less than 0.03% of the formulas have more than
four input variables, so we can safely limit sampling to those
formulas with at most four variables.

Another important detail relates to multiple layers of mem-
ory indirections (pointers to pointers). Since ARM and MIPS
have a much larger number of registers than x86, there is natu-
rally more register spilling necessary on x86. In our aggregated
formulas, we observed many cases where the x86 version used
a memory location as input or output, and ARM or MIPS
simply used a register. However, a register use has only one
input (the value it contains), while a memory indirection has
two (the address specifying the location for indirection and
the value at that location). Since we only compare formulas
that have the same number of inputs, memory indirection thus
effectively disrupted our formula comparison. Normally, to
provide consistent memory (i. e., if an address is calculated
twice in a formula, it references the same value), we would
have to track the calculated addresses of nested memory in-
directions. Thus, for EAX := [[EBX]], we sample a value
for the register EBX, then for the memory location [EBX]
and finally for the memory location [[EBX]]. However, for
sampling, the final result of the computation is a value from
memory (regardless of the layers of indirection), such that it
suffices to track just one level of indirection. Effectively, we
always provide an input variable for each indirection, if their
address formula differed. That way, both an indirection and a
register use account for only a single input.

C. Semantic Hash

We now have a list of I/O pairs, given as CRC checksums,
for each basic block. Determining the similarity based on these
I/O pairs would be expensive, both in respect to storage (due to
the large number of necessary samples) and computation time.
Therefore, we use the MinHash algorithm, which combines
the I/O pairs of a basic block into a locally-sensitive hash.
MinHash works as follows: it applies a (non-cryptographic)
hash function to each element in the list and stores the minimal
hash value among all I/O pairs. To compute the MinHash, this
process is repeated with a variety of different hash functions.
The more hash functions are used, the better the MinHash
converges against the Jaccard index [5]. The purpose of the
hash function is to randomly select an estimator for set-
similarity. The similarity between two MinHashes averages
over i = 0...n such estimators:

sim(mh1,mh2) := |{mh1[i] = mh2[i]}|/n. (1)

The expected error for n hash functions can be estimated
to O(1/

√
n) with a Chernoff bound [44]. We use 800 hash

functions, which leads to an error of about 3.5%.
For our evaluation, we used an affine hash function of the

form h(x) := ax + bmod p with random 64-bit coefficients,
where a prime modulus p guarantees that all coefficients are
generators. To improve performance, we simulate further hash

functions by transforming the output of the real hash function
with rotation and XORing:

t(h(x)) := rotate(h(x), a)⊕ b. (2)

The transformation changes the order of elements and there-
fore the selected minimum, which suffices for MinHashing.

We implemented two improvements of the standard Min-
Hash algorithm. First, we compute multiple MinHashes per
basic block, which we denote as Multi-MinHash. We do so
by splitting the formulas into groups according to the number
of input variables per formula and computing one MinHash
per group. Later, we solely compare MinHashes for the
same number of variables and compute the overall similarity
by weighting the individual MinHashes by the number of
formulas with the specific number of variables in the respective
basic blocks. Thus, to compare two basic blocks, we compute∑

i si · (wi + w′i)∑
i (wi + w′i)

, (3)

where si is the similarity of the formulas with i variables, wi

and w′i the number of formulas with that number of variables
in the firstand respectively the second, basic block. Multi-
MinHash thus solves the issue that formulas with only a
few samples (e.g., very few or no inputs) would be under-
represented in the hash value.

Second, we do not only store the smallest hash value per
hash function, but the k smallest hash values—which we
denote as k-MinHash. This modification allows us to estimate
the frequency of elements in the multi-set of I/O pairs to
some extent, i. e., we can recognize if a basic block has mul-
tiple equivalent formulas. Since deterministic hash functions
map equal values to equal outputs, one cannot substitute k-
MinHash against a MinHash with a larger number of hash
functions. However, k-MinHash can be trivially combined with
Multi-MinHash to benefit from both concepts. When referring
to k-MinHash in the evaluation, we implicitly mean Multi-k-
MinHash for k = 3.

D. Bug Signature Matching

Given a bug signature and a target program, we have to
find code in the target program that is similar to the bug
signature. To this end, we first iterate over the basic blocks of
the bug signature and compare them individually against every
basic block in the target program according to their MinHash
similarity. For each basic block in the bug signature, we sort
the resulting similarities, which results in a list of promising
initial candidates for a full bug signature match. Then, we try
to broaden the best b candidates with our Best-Hit-Broadening
(BHB) algorithm, which computes the similarity of two graphs
of basic blocks.

BHB works as follows: Given a pair of starting points (a
basic block from the signature and its corresponding matching
candidate in the target program), it first explores the immediate
neighborhood of these basic blocks along their respective
CFGs (Figure 5a). When doing so, it strictly separates for-
ward and backward directions. After finding a locally-optimal
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(c) After the third step, three pairs are
matched. There are no further neighbors and
the other two matches are trivial.

Fig. 5: BHB example in three steps: bug signature on the left, target program on the right side. The difference between two
basic blocks is visualized by the different numbers of edges (n) of the shapes. The similarity is then calculated as 1

1+n .

matching among the newly discovered neighborhood nodes
with a matching algorithm, it picks the basic block pair with
the maximum similarity. That is, BHB broadens the already-
matched basic block pairs (Figure 5b). The broadening is
greedy, avoiding expensive backtracking steps. This process
is repeated (Figure 5c) until all basic blocks from the bug
signature have been matched. In the end, BHB computes the
overall matching similarity as the average similarity of all
matched pairs, which is ≈ 0.77 in Figure 5. BHB is then
invoked for the other b−1 matching candidates. The end result
of our bug signature search is a sorted list of BHB similarities,
revealing those matched code parts in the target program that
are most similar to the bug.

Listing 1: Best-Hit-Broadening Algorithm
1 BHB(spi ∈ SP , spt ∈ Ci , Sig )
2 MS = [ ] , MT = [ ]
3 PQ = ( sim (spi , spt ) , (spi , spt ) )
4 while (PQ 6= ∅ )
5 PS , PT := PQ . pop ( )
6 MS += PS , MT += PT

7
8 Dp := sim mat (PS .pred \MS , PT .pred \MT )
9 M̃p := Hungar i an (Dp )

10 PQ . add ( sim (Pi, Pj ) , (Pi, Pj) ) , ∀(Pi, Pj) ∈ M̃p

11
12 Ds := sim mat (PS .succ \MS , PT .succ \MT )
13 M̃s := Hungar i an (Ds )
14 PQ . add ( sim (Pi , Pj ) , (Pi, Pj) ) , ∀(Pi, Pj) ∈ M̃s

15
16 d i s t :=

∑|MS |−1
i=0 sim(MS [i],MT [i])

17 return d i s t / |Sig|

A formal description of the algorithm is provided in List-
ing 1. As input, BHB accepts a basic block from the signature
(spi ∈ SP ) and a similar basic block from the target program
(spt ∈ Ci). BHB keeps track of blocks that were already
matched to each other (MS from the bug signature and MT

from the target program) in a parallel list. Lastly, PQ is a
priority queue of potential basic block matches, sorted by their
similarity in decreasing order. That is, pop retrieves the basic
block pair that is the current best match of the yet unmatched
pairs. Note that PQ only includes pairs for which both basic
blocks are adjacent to the basic blocks that have been matched
so far. Initially (line 3), it only contains the starting point from
the signature and its similar counterpart in the target program.

In lines 6 and 7, the algorithm takes the most similar pair
and adds them to the set of matched basic blocks MS and
MT . In lines 9 and 13, BHB computes the similarity matrix
between blocks in the bug signature and all blocks in the
target program that are adjacent to PS and PT , respectively.
At this point, it finds a locally-optimal matching between
those adjacent nodes to decide where the broadening should
continue (lines 10 and 14). A so-called matching algorithm
finds such a mapping between the left and right side of the
graph, where the sum of all mapped similarities is maximal.
We chose the Hungarian method [12], an algorithm with
runtime O(n3) in the number of nodes. Because we are only
matching neighbors of the current signature basic block with
the neighbors of the matching candidate in the target program,
and do not backtrack, n is quite small. The overall runtime is
thus dominated by the basic block-wise similarity metric.

The block pairs of that ideal mapping are added to the
queue PQ, including their similarity, which is computed with
the MinHash similarity (see Section III-C). BHB completes if
the queue is empty, i. e., all basic blocks in the bug signature
have been matched to a basic block in the target program (or
no matching is possible anymore). Finally, in line 17, BHB
computes the similarity between the bug signature and the tar-
get program by summing up the similarities for each matched
block pair, averaging over the size of the bug signature.

To determine how many candidates b to examine, we
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Fig. 6: Probability of the x-th candidate per basic block in the
signature leading to one of the top 25 function matches.

analyze the probability of the x-th candidate per basic block
in the signature leading to one of the top 25 function matches.
Fig. 6 shows that the best function matches usually stem
from the best individual candidate matches. For this paper, we
choose to investigate only the first b = 200 candidates with
a full-blown invocation of the BHB algorithm, which offers a
reasonable trade-off between accuracy and performance.

IV. EVALUATION

This section gives an empirical evaluation of our approach:
First, we systematically evaluate our code comparison metric
in a binary, cross-architecture setting. Second, we apply it to
our use case: finding bugs using a bug signature.

The experiments were conducted on an Intel Core i7-2640M
@ 2.8GHz with 8GB DDR3-RAM. To ease comparability,
they were performed with a single-threaded process. Our
experiments include 60 binaries from three architectures and
three compiler versions (x86, ARM, MIPS; all 32 bit) (gcc
v4.6.2/v4.8.1 and clang v3.0). While our focus was on
Linux, we encountered different core libraries, especially for
router software (DD-WRT/NetGear/SerComm/MikroTik).
Note that we also compared binaries across Windows and Mac
OS X, i.e., we covered all three major OSes.

Our approach allows us to find (sub-)function code snippets
at any granularity. Still, the following experiments mostly
show function-level comparisons, as function-level signatures
can be chosen automatically. If we manually excluded some
blocks, we would need to justify that choice. Instead, we
decided to use a fair and reproducible test case: function-level
signatures. However, in practice, analysts can choose entire
functions or only parts of a function as a signature.

A. False/True Positives Across Architectures

In this experiment, we aim to match all functions of one
binary A to all functions of another binary B, which measures
how generic our solution is in matching similar code. The
two binaries stem from the same source code base, and thus
principally contain the same code, but were compiled for
different architectures. For each function in A, we compute
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the similarities to all functions in B, resulting in a list of
functions from B sorted by their similarity to the searched-for
function. We then plot the rank of the correct counterpart of
the function in A, i.e., the position in the sorted list, where the
most similar match is at rank 1. We derive the ground truth of
the function mappings based on the (identical) function names
in both binaries. Note that we use the symbolic information
for this mapping only and not in the similarity metric.

First, we evaluate our approach on a single architecture. We
compared two x86 binaries of very similar, but not identical
versions of BusyBox (v1.20.0 and v1.21.1). Figure 7 shows
a cumulative distribution function (CDF) on the ranks of all
functions of this experiment. A perfect method would result
in a straight line, i.e., all correct functions are at rank 1. In
this single-architecture comparison, we could perfectly match
90.4% of the functions (rank 1) and had close matches for
97% (ranked within the top 10). Some of the mismatches may
also be caused by slight changes between the two BusyBox
versions. In any case, this experiment estimates a baseline for
the best quality that we can expect in the cross-architecture
setting.

In the second experiment, we took two binaries of the
same program (BusyBox v1.21.1 and OpenSSL v1.0.1f)
compiled for different architectures. Figure 7 shows that we
can rank about 32.4% of the functions in BusyBox (ARM
to x86) at rank 1, 46.6% in the top 10 and 62.8% in the
top 100. For OpenSSL (ARM to MIPS) we even reach
32.1% for rank 1, 56.1% in the top 10 and 80.0% in the
top 100. Bad rankings mainly resulted from partial structural
differences in the binaries. For example, the MIPS version of
BusyBox has 65 more functions, which suggests different
inlining, and almost 13% more basic blocks, which alters the
CFG of many functions. Our metric is sensitive to the CFG
and the segmentation of the basic block, which we found to
be potentially problematic especially for smaller functions.
However, the chance that these less-complex functions contain
vulnerabilities is also significantly lower [26].

Still, for the majority of cases, Figure 7 shows that our se-
mantic basic block hashes actually provide a reasonable degree
of similarity across architectures. In many cases, the CFGs are
sufficiently similar across architectures to allow for meaningful
comparisons, which means that both the CFG structures and



the separation of basic blocks are largely preserved.
We do not consider function matching as the primary use

case of our approach. Our metric punishes non-matched basic
blocks in the signature, but not in the target function. Thus, a
good match for a small part of the function is ranked higher
than a mediocre, but exhaustive match. However, even with
this metric, the results could be improved, e. g., by fixing
good function matches and thereby successively eliminating
candidates for other function matches.

B. False/True Positives Across Compilers/Code Optimization

The previous example has shown that function matching
is possible even if binaries are compiled for different archi-
tectures. Next, we systematically evaluate how the choice of
compiler and optimization level influence the accuracy of our
algorithm. We chose the largest coreutils programs (mea-
sured at O2, which is the default optimization level, e. g., in
Debian and for automake). As opposed to all other experiments
in this paper, we compiled these programs ourselves on x86
with three different compilers (gcc v4.62, gcc v4.81 and
clang v3.0) and in four optimization levels (O0-O3).

True Positives: In a first experiment, we aim to system-
atically evaluate the true positive rate in the cross-compiler
scenario. To this end, for each program, we compared all
12 binaries with each other (i.e., all 144 binary pairs) using
function-wise matching. For example, we compare cp com-
piled with clang in O1 with cp compiled with gcc v4.62 in
O2. Similarly to the previous experiment, we show the ratio of
correct function matches. However, in contrast to the previous
experiments, the resulting 9 ∗ 144 = 1296 pairs have to be
visualized very densely, making individual CDFs impractical.
Thus, in this experiment (and in this experiment only), we
visualize a match as a true positive, if it is among the top 10
matches.

Figure 8 illustrates the results of this experiment in a
matrix. Each dot in the nine cells illustrates the algorithm’s
accuracy, given one concrete pair of binaries of the same
program. The twelve sub-columns and sub-rows per cell are
divided as follows: columns/rows 1-4 are clang in O0-O3,
columns/rows 5-8 are gcc v4.62 at O0-O3, and columns/rows
9-12 represent gcc v4.81 at O0-O3. The darker a dot, the more
function pairs matched correctly (100% is black). Discussing
each dot in Figure 8 is not possible due to space constraints,
but we can generalize the following observations from this
experiment: (1) The search results are symmetric, i.e., they do
not significantly change if we, e.g., search from gcc binaries
to clang binaries or vise versa. This is good, as the direction
in which a search must be made is generally unknown. (2)
Comparing programs compiled for O0 (i.e., no optimization)
to binaries with any other optimization level significantly
weakens accuracy. Luckily, programs are rarely compiled
without any optimization in practice. (3) Binaries compiled
by the different gcc versions have a higher similarity to each
other than binaries created with different compilers. While
cross-compiler results (i.e. clang vs. gcc) are worse than
intra-compiler results, they still provide meaningful rankings.

(4) Comparing binaries across different optimization levels
(O1-O3) is typically possible with high accuracy. That is,
more advanced optimization strategies introduced in later
optimization levels (O2 and O3) do not severely harm the
overall performance of our system.

False Positives: In a second experiment, we aim to measure
false positives produced by our algorithm. In principle, the
algorithm returns a list of functions with their similarities to
the bug signature. As such, it is not straightforward to judge
if the highest-ranked function is indeed a match, or is just the
function that was least different from the bug signature. Thus,
in general, evaluating false positives in our system is inherently
difficult (if not impossible). Having said this, we acknowledge
that there should be such an evaluation to illustrate the
accuracy of our system. Thus, and only for the purpose of this
experiment, we define a metric which judges if the highest-
ranked function is a match or not. We chose to consider the
highest-ranked potential function match as an actual match
if its similarity is at least 0.1 higher than the second-ranked
match (an admittedly arbitrarily-chosen threshold on a scale
from 0–1). The intuition behind this heuristic is as follows:
If no function matches, all functions will be more or less
equally different, i.e., their similarity scores are more densely
connected. However, an analyst might be misled by a highly
ranked function with a low similarity score, if that function
stands out from the others—that is, if its similarity is high in
contrast to the next-best match. Again, note that we use this
threshold for this false positive experiment only. It is not an
integral part of our system and is also not used in the other
experiments (see also the discussion in Section V).

To this end, we focused on the nine coreutils programs
in a single, common compiler setting. We chose to use gcc
due to its popularity (in v4.62) and the optimization level
O2 (again, since it is often the default optimization level).
We then compared each program with every other program,
resulting in 81 program comparisons. Again, we tried to match
all functions in program A with all functions in program B.

Figure 9 illustrates the similarity of two different programs.
For each program, we compute the ratio of functions that
have been supposedly erroneously matched with the other
program. We excluded functions from the matrix that had the
same names in two coreutils programs (i.e., code sharing
between programs), as they would bias the evaluation. The
cells represent the ratio of function matches, i.e., highest-
ranked functions whose similarity score is significantly (the
0.1 threshold) higher than the second-ranked function. That is,
on the diagonal line, in which we actually do expect matches,
dark cells represent high true positive rates. On the contrary,
in all other cells, where we do not expect matches, dark cells
represent high false positive rates. The figure shows that even
if we use such a crude mechanism to judge un actual matches,
the false positive rate of our system is fairly low. We suffered
seemingly many false positives when comparing functions of
ls and dir. In fact, these programs are almost identical,
leading to many (correct) matches. Since those programs
had the same optimization level, whereas the main diagonal
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Fig. 8: True positive matrix for the largest coreutils programs, compiled with three different compilers and four different
optimization levels. Darker colors represent a higher percentage of correctly matched functions (see Figure 9 for color scale).
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Fig. 9: Fraction of strong matches for the largest coreutils
programs. Darker colors represent a higher percentage of top-1
ranks, which exceed the threshold of 0.1 similarity difference
to the top-2 rank. On the main diagonal, these matches are
true positives; in all other cells they reflect false positives.

averages over all optimization levels, the matching results are
actually even better for this special case.

C. Bug Search in Closed-Source Software

In this section, we evaluate several case studies of recent
prominent cross-architectural vulnerabilities. For example, we
find the Heartbleed bug on desktops as well as on mo-
bile devices and router firmware images. Similarly, we find
BusyBox bugs, which are part of closed-source bundles
of embedded devices (e.g., home routers) across multiple
architectures. Finally, we identify a bug and a backdoor in
closed-source firmware images.

Our method is targeted towards fine-grained, sub-function
code similarity. A bug signature should hold the most discrim-
inatory parts from the buggy binary code, which may include
context that does not strictly belong to the bug. We could
easily generate such signatures automatically from source code
information (see Section II-B). While this allows one to tweak
bug signatures to achieve optimal results, we chose not to do so
in our experiments to ensure reproducibility and comparability

TABLE I: Ranks of functions vulnerable to Heartbleed in
OpenSSL compiled for ARM, MIPS and x86, in ReadyNAS
v6.1.6 (ARM) and DD-WRT r21676 (MIPS) firmware. Each
cell gives the ranking of the TLS/DTLS function.

Multi-MH Multi-k-MH
From → To TLS DTLS TLS DTLS
ARM → MIPS 1;2 1;2 1;2 1;2
ARM → x86 1;2 1;2 1;2 1;2
ARM → DD-WRT 1;2 1;2 1;2 1;2
ARM → ReadyNAS 1;2 1;2 1;2 1;2
MIPS → ARM 2;3 3;4 1;2 1;2
MIPS → x86 1;4 1;3 1;2 1;3
MIPS → DD-WRT 1;2 1;2 1;2 1;2
MIPS → ReadyNAS 2;4 6;16 1;2 1;4
x86 → ARM 1;2 1;2 1;2 1;2
x86 → MIPS 1;7 11;21 1;2 1;6
x86 → DD-WRT 70;78 1;2 5;33 1;2
x86 → ReadyNAS 1;2 1;2 1;2 1;2

of our work. Instead, we declare the entire function containing
a bug as our bug signature.

1) OpenSSL/Heartbleed: In April 2014, the critical Heart-
bleed bug (CVE-2014-0160) was fixed in the OpenSSL
cryptography library. Since OpenSSL is an integral part of
many TLS implementations, this security-critical bug is widely
deployed, including many closed-source software applications.

The Heartbleed bug allows an attacker to perform an out-
of-bounds read, which is, due to the handled key mate-
rial and OpenSSL’s built-in memory management, highly
security-critical. The bug can be triggered remotely by ma-
nipulating heartbeat (keep-alive) messages [34]. The vulnera-
ble functions are tls1_process_heartbeat (TLS) and
dtls1_process_heartbeat (DTLS) in v1.0.1a-f.

We extracted one bug signature for each of these two func-
tions from v1.0.1f in an automatic fashion, which required only
the vulnerable function’s name and its starting address. Again,
we stress that more specific signatures might fit better into our
tool’s niche of fine-grained code comparison. However, we
chose not to manually refine the signature in order to avoid
deceptive and possibly over-fitted signatures.

We use these signatures to find the vulnerable functions
in OpenSSL binaries that we compiled for x86, MIPS, and
ARM. In addition, we also search in two real-world occur-
rences of vulnerable OpenSSL libraries in firmware images:
the Linux-based router firmware DD-WRT (r21676) compiled
for MIPS and a NAS device (Netgear ReadyNAS v6.1.6) with
an ARM processor [9], [31]. We took the firmware images
provided on the project websites, unpacked them and searched



TABLE II: make_device ranks in BusyBox for Multi-MH.
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TABLE III: socket_read ranks in firmware for Multi-MH.
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11P
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DGN1000 - 1 2 1
DGN3500 1 - 1 1
DM111Pv2 2 2 - 1
JNR3210 1 1 1 -

with the automatically generated signatures.
Table I shows the ranks of the vulnerable functions in

OpenSSL, where “From” indicates the architecture that we
used to derive the bug signature, and “To” indicates the
architecture of the target program. Each cell contains the
ranking of both vulnerable functions (heartbeat for TLS and
DTLS). Table I shows that the combination of semantic
hashes and BHB works well, giving almost perfect rankings.
For example, the highlighted cell shows that our algorithm
ranks the vulnerable TLS and DTLS functions in the MIPS
binary at rank 1 and 2, respectively, when searching with the
corresponding signature from an ARM binary.

Again, we observe that the improved semantic hash
(k-MinHash) improves accuracy. E. g., for OpenSSL x86
vs. MIPS with the DTLS-signature, we noticed improved
ranks, because seven basic blocks had duplicated formulas,
which Multi-MinHash cannot detect (see Section III-C).

Searching from and to ARM and x86 works almost per-
fectly, while combinations with MIPS sometimes work a little
less well (e. g., for OpenSSL x86 vs. DD-WRT). Usually, due
to its RISC instruction set, MIPS has either more basic blocks
(about 13% more for BusyBox ARM vs. MIPS) or more
formulas (1.42 times for OpenSSL MIPS vs. x86).

2) BusyBox Vulnerabilities: In late 2013, a bug was dis-
covered in BusyBox versions prior to v1.21.1, where sub-
directories of /dev/ are created with full permissions (0777),
which allows local attackers to perform denial-of-service at-
tacks and to achieve local privilege escalation (CVE 2013-
1813 [38]). The affected function build_alias() is inlined
into the make_device() function, which complicates mat-
ters for techniques relying on function equivalence. Table II
shows that our technique succeeds in identifying similar code
in the context of inlining, where, in contrast to function
matching, only a subarea of a function should be matched.
Note that the ranking is not perfect when searching in ARM
code, where make_device() has only 157 basic blocks,
with a bug signature from MIPS code (183 basic blocks).

3) RouterOS Vulnerability: In 2013, a vulnerable function
in MikroTik’s RouterOS v5 and v6 was found in the
SSH daemon. Due to a missing length check in the method
getStringAsBuffer(), the attacker can trigger a seg-
mentation fault. This allows a remote heap corruption without

prior authentication, which can be leveraged to arbitrary code
execution [23]. RouterOS is available for both MIPS and x86.
Using the vulnerable function for either architecture as a bug
signature, we reliably found the vulnerable function for the
other architecture at rank 1. We obtained similar results for all
hashing methods, but omit the table due to space constraints.

4) SerComm Backdoor: Lastly, we show that our approach
can also be used in other contexts, such as finding known back-
doors. To demonstrate this, we search for a known backdoor in
SerComm-powered firmwares [41], which opens a shell once
it receives a special packet on TCP port 32764. Hardware by
SerComm is used by multiple router manufacturers (like Cisco,
Linksys and Netgear). We defined the socket_read()
function as a bug signature and searched for similar backdoors
in MIPS-based Netgear firmware (DGN1000, DGN3500,
DM111Pv2, JNR3210). Table III shows that we find the
backdoors reliably in all combinations.

5) libpurple Vulnerability: Up to this point, we only
showed case studies with full functions as signatures, even
though we do not consider this our primary use case. Our main
motivation for doing so lies in the fact that any hand-crafted
signature has to be justified, so as not to be dismissed as
tweaked for the particular example. Nevertheless, we feel the
need to highlight that, especially for bug search, full function
matching (as, e. g., done with BLEX [11]) is not sufficient.

CVE-2013-6484 documents an attack that allows an attacker
to crash versions prior to v2.10.8 of Pidgin, a popular
instant messenger. Both the Windows version of Pidgin
and its Mac OS X counterpart Adium (v1.5.9) suffer from
this vulnerability. In this example, the vulnerable function
in Pidgin contained many basic blocks of other inlined
functions, whereas Adium did not inline them. Consequently,
the Pidgin function had 25% more basic blocks.

Intuitively, both functions differed significantly, and par-
ticularly using the larger function as a bug signature may
introduce problems. Indeed, our tool—presumably similarly
to purely function-wise matching approaches, such as BLEX—
could not achieve good ranks for full function signatures. From
Windows to Mac OS X and vice versa we achieved rank
#165 and rank #33, respectively.

However, when choosing ten basic blocks by hand, we
achieved rank #1 in both cases. We did so in a methodical way:
We included all basic blocks from the function start through
the vulnerability, while avoiding the early-return error states.

D. Unpatched vs. Patched Code

We noticed that a patch typically introduces few changes
to a vulnerable function. This causes our approach to also
identify patched code parts as similar to the bug signature,
effectively causing false positives. In an experiment to tackle
this issue, we created two bug signatures: in addition to the
one for the vulnerable function, we also defined a signature
for the patched function. Although both signatures will match
reasonably well, intuitively, the latter signature has a higher
similarity for patched code than the original bug signature.
Tab. IV shows that for the bugs in OpenSSL and BusyBox,



TABLE IV: Unpatched/patched signature similarities with
Multi-MinHash in OpenSSL and BusyBox.

From → To Rank Similarity
OpenSSL x86 → ReadyNAS (ARM)
v1.0.1f (unpatched) → v6.1.6 (unpatched) 1 0.3152
v1.0.1g (patched) → v6.1.6 (unpatched) 1 0.1759
v1.0.1f (unpatched) → v6.1.7 (patched) 1 0.3021
v1.0.1g (patched) → v6.1.7 (patched) 1 0.3034

BusyBox ARM → BusyBox x86
v1.20.0 (unpatched) → v1.20.0 (unpatched) 1 0.2676
v1.21.1 (patched) → v1.20.0 (unpatched) 1 0.1689
v1.20.0 (unpatched) → v1.21.1 (patched) 1 0.1658
v1.21.1 (patched) → v1.21.1 (patched) 1 0.2941

TABLE V: Runtime in minutes in the offline-phase.

Entity #BBs IR-Gen. Multi-MH k-MH
BusyBox, ARM 60,630 28 80.3 1522
BusyBox, MIPS 67,236 35 86.9 1911
BusyBox, x86 65,835 51 85.0 1855
OpenSSL, ARM 14,803 8 16.3 349.7
OpenSSL, MIPS 14,488 9 16.3 434.0
OpenSSL, x86 14,838 12 20.2 485.2
Normalized Avg. 10,000 6.2 12.5 279.9

either bug signature (patched or unpatched) ranked both soft-
ware versions at rank 1. However, in all cases, the unpatched
version is more similar to the “buggy” bug signature, and vice
versa (considerably in three cases, marginally in one). This
could give valuable information to an analyst deciding whether
he is looking at a false positive.

E. Performance

Lastly, we evaluate the performance and the scalability of
our system. Our approach has three computational phases (IR
generation, semantic hashing and signature search) for which
we will give separate performance evaluations.

IR generation: The IR formulas only need to be computed
once per binary. The runtime to describe the I/O behavior
increases linearly with the number of basic blocks, but varies
with each basic block’s complexity. If it consists only of a
jump, this step is considerably faster than for a basic block
with many instructions. Since both types of basic blocks
regularly appear, Table V shows the average timings achieved
in real-life programs, showing that formulas can be created in
less than an hour for all programs under analysis.

Semantic hashing: In the case of hashing, the number
of formulas in a basic block and their respective number
of input variables dominates the runtime. We thus limited
the number of samples to 3000, whereas we used fewer
samples for formulas with fewer input variables. The sample
set is sufficiently large to capture semantic differences and
the accuracy did not significantly improve for larger sets. At
the same time, as shown in Table V, sampling and MinHash
of real-life programs scales. Clearly, the higher accuracy of
k-MinHash (see Table I) comes at the price of performance
degradation of a factor of ≈ 22.5 on average. Again, note
that this computation is a one-time-only effort and can be
parallelized trivially down to a basic block level.

Signature Search: The two previous steps represent one-
time costs and do not influence the overall performance as
much as this third step: the actual search phase. Recall that
we initially search for promising candidates for each basic

TABLE VI: Runtimes of the signature search.

# BBs Runtime
Sig Target Multi-MH k-MH

BusyBox v1.20.0
ARM → MIPS 157 70,041 230.6s 754.0s
ARM → x86 157 66,134 197.7s 644.4s
OpenSSL v1.0.1f
MIPS → ARM 25 14,803 14.2s 46.8s
MIPS → x86 25 14,838 14.4s 46.9s
Normalized Avg. 1 10,000 0.3s 1.0s

block in a signature by comparing it against all basic blocks
in the target program. The runtime thus increases in a linear
fashion for both the number of basic blocks in the signature
(usually a few dozen) and the number of basic blocks in the
target program (usually in the order of 104).

Table VI gives exemple runtimes for the signature search
in various scenarios. Typically, the runtime is in the order
of minutes for the real-world use cases. In the worst case, it
took about 12.5 minutes to search for bugs with k-MinHash
in a MIPS-based BusyBox. The evaluations show that the
complexity of the signature has a high impact on the runtime.

V. DISCUSSION

This section discusses some of the remaining challenges of
our system, most of which we plan to address in future work.

A. Vulnerability Verification

One challenge that we already touched upon in Section IV
is the fact that our approach cannot verify that the code
part that was found is actually vulnerable. Such an automatic
verification would be ideal, but surely is a research topic
in itself and is outside the scope of this work. The ranking
produced by our system gives an ordered list of functions
that have to be manually inspected by an analyst to verify if
those functions are actually vulnerable. This way, the manual
process is greatly reduced, as the analyst will oftentimes find
the vulnerability in the top-ranked functions.

In case a binary does not contain the bug that was searched,
the ranking scheme still gives a list of functions. Naturally, an
analyst would then fail to find vulnerable functions, even when
inspecting all ranked functions. Ideally, we could give some
indication if there is a reasonable match at all. This could, e.g.,
be based on the similarity score, which represents the semantic
similarity between the bug signature and a function: If the
functions ranked first have “low” similarities, this suggests
that even the best hits are not vulnerable.

In future work, we will investigate whether we can expand
our scheme with “similarity thresholds” that can separate
potential matches from non-matches in the ranking. The
heuristics that we used in Section IV-B are only a first step. A
better, more reliable mechanism to determine actual matches
will allow for further use cases of our work, such as large-scale
binary searches to identify license violations.

B. False Negatives

A few challenges could cause false negatives in our ap-
proach, i.e., it would miss actual vulnerabilities. Note that
we explicitly exclude obfuscated binaries from our scope.



We have shown that although common off-the-shelf compiler
optimizations may weaken detection results, the extent of this
is limited. For example, our method relies on basic blocks
being split in a similar way and does not tolerate substantial
changes to the CFG in the important (i.e., buggy) parts of the
code. We showed that these assumptions are indeed met in
many practical examples, even across processor architectures.

One of the core problems of comparing software at the
binary level is that its representation (even on a single architec-
ture) heavily depends on the exact build environment that was
used to compile the binary. Varying compilers have different
strategies to translate the same source code to binaries, as
they implement different optimization techniques (and levels).
In the following, we briefly discuss some of the most common
optimization techniques and compiler idiosyncrasies and how
our system tackles them.

1) Register spilling: The number of general-purpose regis-
ters varies between the CPU architectures: x86 features 8 such
registers, legacy ARM 15, and MIPS 32. Architectures with
fewer registers typically need to spill registers more frequently,
i.e., they have to move data between memory and registers.
Naı̈vely, this has an effect on the I/O pairs of basic blocks, and
thus complicates comparison between different architectures.
As described in Section III, we successfully addressed this
issue by flattening nested memory indirections.

2) Function Inlining: Function inlining heavily changes
the CFG of a program and may thus become problematic
for our approach. However, if the bug signature covers the
inlined function, then our approach can still find the code
parts. In fact, the larger context in which the vulnerable code
parts are embedded is not relevant for our approach, as long
as the sub-CFGs remain similar. Thus, as also demonstrated
with BusyBox, we can find buggy code that has been
inlined (cf. Section IV-C2). Things become slightly worse if
the bug signature was derived from a function that included
inlined functions and if the target programs do not show such
inlining. But even then, using the multiple initial basic block
matches in our BHB algorithm, our approach can likely find
the multiple counterparts in the non-inlined target program.

3) Instruction Reordering: Compilers may reorder inde-
pendent computations to enhance data locality. Reordered
instructions in a basic block change the syntactic assignment
formulas in the IR. However, ultimately the I/O pairs are the
same, as otherwise the semantics of the basic block would
have changed. By comparing the code semantics, our system
thus tackles reordering for free.

4) Common Subexpression Elimination: When compilers
eliminate common subexpressions, such as when optimizing
the expression (x ∗ y) − 2 ∗ (x ∗ y), neither the output value
nor the number of inputs change. However, our system will
create additional formulas for additional temporary variables
that the compiler may use.

5) Constant Folding: Our approach can easily deal with
constant folding, such as 2 + 4 becoming 6 at compile time.
Either way, using sampling, the output variables will have
equal values. This is an additional advantage of comparing

semantics instead of syntax.
6) Calling Conventions: Our approach is largely indepen-

dent of calling conventions. As we abstract from concrete
register names, to us it is not important which registers (or
stack/memory addresses) are used to pass registers or to return
results. It would be problematic when comparing the syntax
of the IR representations, but when hashing the sampled I/O
pairs, our approach completely ignores register names.

This list of compiler idiosyncrasies is incomplete, but
covering all of them would go beyond the scope of this
discussion. We have to acknowledge that some optimizations
modify the CFG (e.g., loop unrolling, dead code elimination)
and may become problematic if they affect the code parts
of the bug signature. However, our evaluation has shown
that our system performed well in a realistic setting and
implicitly covered many of the optimization cases. Recall
that most of the experiments conducted in Section IV were
based on real-world binaries that were compiled by various
vendors. That is, we did not self-compile these binaries in
a homogeneous setting. Instead, our algorithm worked well
for heterogeneous build environments (different compilers,
optimization strategies, etc.), underlining the usability of our
approach in a practical setting.

C. Scalability
We performed all experiments in a single process/thread

and did not use any parallel computing to speed up the
experiments. The algorithm with the best results, k-MinHash,
degrades performance quite significantly. This may become
problematic when searching multiple signatures in a large
database of binaries. A solution could be to run the compu-
tationally cheaper algorithms (e.g., Single-MinHash) first and
then re-process the high ranks with k-MinHash. Moreover,
most computations can be scaled up with straightforward
parallelization. The unification/sampling/hashing phases can
run in parallel on a basic block level, which would reduce
the runtime by orders of magnitude with commodity servers.

In addition, note that the most compute-intensive parts of
our approach are one-time operations. That is, translating the
binaries, sampling and hashing has to be performed only once
per binary under analysis. Only the matching phase needs to
be run once per search for a bug signature—a process that can
also easily run in parallel.

VI. RELATED WORK

To the best of our knowledge, we are the first to propose a
strategy for comparing binary code across different architec-
tures. Our work thus differs from other works that have a sim-
ilar use case (bug finding) and it is therefore hard to directly
compare our cross-architecture bug search with other works
that operated under less challenging conditions (e.g., with
available source code or only for a single architecture). This
is also the reason why we did not compare our evaluation to
existing approaches, simply because there is no other approach
that operates on multiple architectures. In the following, we
review works that also aim to find code similarity or bugs,
albeit using quite different preconditions.



A. Code Similarity

A first line of research has proposed methods to find code
clones on a source code level. CCFINDER [22] can find
equal suffix chains of source code tokens. DECKARD [18]
leverages abstract syntax trees and local sensitive hashes to
find similar subtrees of source code. Yamaguchi et al. [42]
broaden this concept with methods from text mining to not
only re-find the same bug, but in the best case extrapolate
vulnerabilities by finding close neighbors, or even to find
missing checks through anomaly detection. The latter was
also studied independently by Gauthier et al. [14]. Lastly,
REDEBUG [17] is a highly scalable system to find unpatched
code clones in many popular programming languages. As
opposed to our system, these approaches require source code
and thus cannot aid code search in binary software, especially
not for closed-source software.

Lacking symbolic information complicates the process of
comparing code at the binary level. Early approaches to find
binary code similarity rely on sequences of occurring calls [1]
or assembly K-grams [30]. Other approaches follow strategies
to compare the semantics of code. BINHUNT [13] uses sym-
bolic execution and a theorem prover to show that basic blocks
are semantically equivalent, but suffers from performance
bottlenecks. A follow-up project, IBINHUNT [29], augments
BinHunt with taint analysis to reduce the number of possible
matches. Not only are both works tailored towards equivalence
instead of gradual similarity, which is problematic for bug
extrapolation, they are both specific to x86, which makes them
incomparable to our work. BINJUICE [24] translates basic
blocks into syntactic equations (similar to our formulas) and
uses the concatenated and hashed equations as one input to
measure similarity between two basic blocks. However, this
approach is assumed to fail across CPU architectures, as we
have shown that formulas are syntactically different for each
architecture. BINHASH [20] relies on the input/output behavior
of equations, but also does not include steps to support
multiple architectures. Furthermore, they cannot use the CFG,
but instead have to aggregate the hashes on a function level.
This precludes sub-function granularity, which is problematic
for our use-case. EXPOSÉ [32], a search engine for binary
code, uses a theorem prover to match binary functions, but
operates on a function level and simply assumes a single
calling convention (cdecl), which is impractical even on a
single CPU architecture.

Concurrent to our work, Egele et al. proposed Blanket Ex-
ecution (BLEX) [11], a system to match functions in binaries.
They execute each function of a binary for a low number of
execution contexts (according to the authors, three is sufficient)
and save the function-level output. They also make sure to ex-
ecute each of the functions’ basic blocks at least once, simply
by re-executing the function from the first basic block that
was not yet covered. Note that the changes to the execution
contexts propagate through the basic blocks and thereby only
function-level output is considered. While BLEX can compare
binaries compiled with different optimization levels, it can

only perform function-level matching. Due to this fact, the
number of entities which have to be compared is quite low in
comparison to our work, which is why they did not have to
use techniques like MinHashing. BLEX currently supports only
x64 binaries, and extending its scope to other architectures
would be tedious—both because BLEX is based on Intel’s Pin
and because it does not address many of the challenges of
cross-platform binary comparisons (cf. Section II-C).

Our work has similar goals as TEDEM [33], which uses a
notion of signatures to find bugs in binaries. We also perform a
greedy search when broadening the signature, as our proposed
Best-Hit-Broadening algorithm shows. However, the authors
use tree-edit distance metrics, which severely slow down the
matching process and do not capture all syntactical changes.
Thus, TEDEM is not suitable for cross-platform comparisons.

Our approach overlaps with some ideas of these works,
but has many novel aspects. We developed a cheap, semantic
metric, which utilizes the CFG and is able to operate on
sub-function granularity. Most importantly, we are the first to
compare binaries across architectures by unifying binary code
from multiple architectures to a common representation.

B. Identifying Previously-Unknown Bugs

We aim to identify bugs that are similar to well-known bugs.
Orthogonal related work searches for previously-unknown
bugs. To this end, some works rely on source code to
find vulnerabilities. For example, in AEG [2], Avgerinos et
al. suggest using preconditioned symbolic execution in order
to explore exploitable program paths. Similarly, COVERITY [4]
uses static analysis to reveal potential memory corruption
vulnerabilities or data races; however, it fails to verify whether
all preconditions for exploitation are actually met, and also
does not cover all bug classes. In fact, the authors described
why Coverity did not detect the Heartbleed bug [7].

Shankar et al. proposed using a type-inference engine to
detect format string vulnerabilities [35]; a similar principle
was followed by Johnson and Wagner [21]. Other approaches
can identify new bugs even without access to source code.
Arguably the first work in this area was Miller et al.’s proposal
to use blackbox fuzzing to provoke program crashes [28].
Livshits and Lam use tainting to find vulnerabilities in Java
bytecode [25]. Recently, Cha et al. introduced an efficient
symbolic execution engine to find previously-unseen bugs
at the binary level with MAYHEM [6]. In general, dynamic
analysis approaches like fuzzing or Mayhem require an op-
erable environment where the software is actually running.
As illustrated by Zaddach et al. [43], this is far from easy
on highly-specialized hardware such as embedded devices. In
contrast, a purely static analysis like ours does not have to deal
with the peculiarities of the actual hardware platform other
than its CPU architecture. Moreover, many existing solutions
are tailored to find only one class of bugs, such as control
flow hijack vulnerabilities. As such, they are not generally
suitable to find any class of bugs, as our system is. On the
other hand, these tools can find previously-unseen bugs, while



our approach is focused on re-finding bugs in other binary
software. We thus consider these works as complementary.

VII. CONCLUSIONS

In this paper, we showed that semantic binary code match-
ing is possible across CPU architectures under reasonable
assumptions that hold in practice. This advances prior research
results that are restricted to comparing binary code of a single
architecture. Our novel metric allows for fine-grained code
comparison, which we successfully applied to identify real-
world vulnerabilities in closed-source software.

The pervasiveness of the Heartbleed bug exemplifies the
importance of identifying code parts in closed-source binary
programs that contain a specific vulnerability. With the rise of
closed-source software on other architectures (e.g., Windows
RT and iOS on ARM, or numerous firmware binaries for
MIPS), and re-use of potentially vulnerable code in such
software, our approach can greatly assist in finding future
vulnerabilities in binaries compiled for any architecture.
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