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ABSTRACT
Since several years, millions of recursive DNS resolvers are—
deliberately or not—open to the public. This, however, is
counter-intuitive, since the operation of such openly acces-
sible DNS resolvers is necessary in rare cases only. Further-
more, open resolvers enable both amplification DDoS and
cache snooping attacks, and can be abused by attackers in
multiple other ways. We thus find open recursive DNS re-
solvers to remain one critical phenomenon on the Internet.

In this paper, we illuminate this phenomenon by analyz-
ing it from two different angles. On the one hand, we study
the landscape of DNS resolvers based on empirical data we
collected for over a year. We analyze the changes over time
and classify the resolvers according to device type and soft-
ware version. On the other hand, we take the viewpoint
of a client and measure the response authenticity of these
resolvers. Besides legitimate redirections (e.g., to captive
portals or router login pages), we find millions of resolvers
to deliberately manipulate DNS resolutions (i.e., return bo-
gus IP address information). To understand this threat in
more detail, we systematically analyze non-legitimate DNS
responses and reveal open DNS resolvers that manipulate
DNS resolutions to censor communication channels, inject
advertisements, serve malicious files, perform phishing, or
redirect to other kinds of suspicious or malicious activities.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

Keywords
Domain Name System; DNS Resolution Paths; Content De-
livery Network; Agglomerative Hierarchical Clustering
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1. INTRODUCTION
The Domain Name System (DNS) is a hierarchical, dis-

tributed naming system and one of the core elements of the
Internet. Its most common task is to provide a mapping
between domain names and the associated IP addresses. As
DNS is an open system, anyone is allowed to operate a pub-
licly accessible resolver. Prior empirical studies identified
millions of such resolvers that are available on the Inter-
net [17,27]. This, however, is counter-intuitive since the op-
eration of publicly accessible DNS resolvers is only manda-
tory in rare cases only (e.g., for public DNS services such as
Google DNS or OpenDNS). Furthermore, DNS resolvers are
an attractive target, e.g., for cache snooping attacks [14] or
as participants of amplification DDoS attacks [17,24,29,37].

In 2008, an interesting attack was revealed by Dagon et
al. [10], who were one of the first that documented the
creation of malicious DNS resolution paths by attackers.
The authors found attackers to force victims to use rogue
DNS servers for all resolutions, thus being able to redirect
arbitrary network connections by providing incorrect DNS
replies. To understand such attacks in more detail, they
performed an empirical analysis of this phenomenon: they
analyzed 600,000 open DNS resolvers on the Internet and
performed DNS lookup requests of 84 distinct domain names
to identify unexpected, suspicious, and malicious responses.

Seven years later, this threat of open DNS resolvers con-
tinues to pose a serious problem, especially since the foot-
print left by attackers is small (i.e., only the clients’ DNS
resolution is changed). Furthermore, it is unclear how the
threat landscape evolved in the last seven years. Weaver et
al. provided a glimpse into this problem based on DNS traf-
fic aggregated from Netalyzr sessions [40, 41]. Netalyzr is a
Java-based applet running on end hosts of volunteers and an-
alyzes multiple properties of the clients’ Internet connections
such as the reliability of the utilized DNS resolvers. In their
measurement study, the authors mainly focused on DNS er-
ror monetization, a technique to redirect clients to specific
advertisement websites upon requests for non-existent (NX)
domain names. Furthermore, they also observed sessions
in which DNS resolvers redirected end hosts to systems of
malicious character. Yet, the number of analyzed DNS re-
solvers was rather low, thus it remains unclear whether the
observed results generalize to all DNS servers world-wide.
Several other studies analyzed DNS resolvers [1,4,25,33,34],



yet these studies were mainly conducted on a small sub-
set of all resolvers in the IPv4 address space. As such, open
DNS resolvers and the potential of malicious DNS resolution
paths remain an underexplored phenomenon on the Internet.

In this paper, we illuminate this phenomenon and present
the results of a long-term, large-scale empirical study of DNS
resolvers on the Internet. In a first step, we monitor the
landscape of devices that listen to DNS requests and reply
with valid DNS responses. Based on the data collected via
weekly Internet-wide scanning activities for more than one
year, we provide a comprehensive overview of the resolvers’
landscape. During our 13-month-long study, the number
of DNS resolvers dropped from 26.8 to 17.8 million servers.
To get a better understanding of these hosts, we analyze
their properties in terms of geographical and network-based
distribution, operated DNS server software, and underlying
hardware. We find 76.4% of the resolvers in the Top 25
networks (that operate most servers) to be associated with
various broadband telecommunication providers world-wide.

In the second phase of our study, we take the viewpoint
of a client system to analyze the integrity of the DNS reso-
lutions provided by open recursive DNS resolvers. That is,
we aim to understand whether the resolvers actually return
legitimate answers or perform bogus resolutions to provide
clients with false IP address information. To this extent,
we manually selected a set of 155 domains from 13 different
website categories (i.e., banking pages, ad providers, adult
sites, etc.) that an attacker potentially wants to tamper
with. We then perform DNS lookup requests for all domain
names on each identified open DNS resolver in the IPv4 ad-
dress space. By prefiltering “correct” pairs of resolvers and
the IP addresses they returned, we sort out all previously
seen legitimate answers to significantly reduce the data set.
The remaining answers are potentially incorrect, hence we
aim to understand them in more detail. We thus request
HTTP content for each non-legitimate DNS response and
cluster the responses by leveraging agglomerative hierarchi-
cal clustering. In the final step, a manual labeling of these
clusters enables us to understand the nature of bogus reso-
lutions. Besides legitimate redirects (e.g., captive portals),
we find many cases of censorship, ad redirections, and sus-
picious activities. More specifically, more than 3 million re-
solvers redirect requests of specific domain names to a small
set of IP addresses that host landing pages for censorship
of 34 countries. Our in-depth analysis of the HTTP con-
tent also enables us to reveal other kinds of abuses. We find
281 resolvers to redirect ad traffic of two large ad providers,
while 228 DNS resolvers redirect client systems to malicious
content. Further 10,179 resolvers returned a set of IP ad-
dresses that act as HTTP proxies for all requested domains.
As such, clients might risk to disclose sensible login infor-
mation when relying on these open recursive DNS resolvers.

To summarize, our contributions are as follows:
• We perform a long-term, large-scale empirical monitor-

ing of DNS resolvers on the Internet, study the changes
over time, and classify the resolvers based on charac-
teristics such as device type and software version.
• We systematically evaluate the authenticity of DNS re-

sponses when querying open recursive DNS resolvers.
That is, we study whether DNS resolvers return in-
correct responses upon requesting a set of 155 domain
names from 13 different categories, whereas one main
focus of our analyses is DNS-based censorship.

• We study in detail the content returned by manip-
ulated DNS responses from open DNS resolvers and
uncover different cases of fraudulent manipulation, re-
spectively, phishing of web content and email traffic.

Domains and Datasets. The complete list of scanned
domains can be found at http://syssec.rub.de/research/
dns. Upon request, we further provide access to all datasets
that we addressed throughout our analyses in this paper.

2. DNS RESOLVERS IN THE WILD
We begin with a general overview of DNS resolvers in the

IPv4 address space. That is, we provide information regard-
ing the magnitude of systems responding to DNS requests
and aim to shed light onto the deployed software versions
and hardware devices of these hosts. We then discuss our
findings in terms of IP address churn and analyze the uti-
lization of the identified DNS resolvers in more detail.

2.1 Terminology
Before going into our analyses, we briefly introduce the

DNS-specific terminology that we use throughout this paper.
We distinguish between recursive resolvers (or “resolvers”)
and authoritative name servers (or “AuthNS”). When re-
questing the resolution of a domain, a resolver follows the do-
main name hierarchy and iteratively contacts the AuthNSes
of the domain to look up a DNS request. In contrast, an
AuthNS is responsible for answering lookup requests for its
zone, i.e., a subset of the DNS hierarchy (e.g., a domain).
An AuthNS does not need to process lookup requests for
domains other than in its zone, hence we strictly separate
AuthNSes from resolvers (although we may find hosts that
serve both roles). For resolvers, we further distinguish be-
tween open resolvers, which accept and process DNS queries
from any external location, and closed DNS resolvers, which
allow queries from a trusted subset of IP addresses only.

2.2 Resolver Magnitude
First, we monitor the landscape of devices that listen to

DNS requests and reply with valid DNS responses. That
is, we perform weekly Internet-wide scans in IPv4 for more
than one year and enumerate the responsive DNS resolvers.

Scanning Setup. To perform Internet-wide scans in the
IPv4 address space, we implemented an efficient scanning
software. We adopted multiple scanning practices suggested
by Durumeric et al. [12] to abide reasonable scanning behav-
ior. For example, our scanner applies a linear feedback shift
register (LFSR) of order 232 − 1 to distribute the sequence
of target IP addresses. As such, scanned networks receive a
limited number of DNS requests within a short time frame.

In an IPv4 scan, we send a single DNS A lookup request
for a specific domain to each IP address in IPv4, excluding
well-known private and unallocated network ranges. Each
request is specifically crafted and includes a random domain
prefix (to avoid caching) and the hex-formatted IP address
of the target host in the form prefix.hex-ip.domain.edu.
This allows us to obtain the IP address of the target host to
which the request was sent by inspecting the DNS response.

To offer networks to opt-out from our scanning activities,
we defined a reverse DNS (rDNS) record for the scanning
system and set up a web server with project details. In total,
we added 208 network ranges and 50 individual IP addresses
to our blacklist upon request of a network administrator,
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Figure 1: DNS resolvers identified in our weekly scans

resulting in 20,834,166 blacklisted IP addresses. To allow
comparisons between the individual weekly scans, we ignore
blacklisted IP addresses in all of our scanning results.

Results. We initiated the first DNS scan on Jan 31, 2014
and performed weekly scans for more than one year. Fig-
ure 1 outlines the total number of unique IP addresses re-
sponding to our requests and illustrates the number of sys-
tems that replied with the most common DNS status codes
(NOERROR, REFUSED, and SERVFAIL). Note that NOERROR in-
cludes all hosts that sent a DNS response with this status
flag set—regardless of the actual content of the DNS answer
section. That is, we consider resolvers that returned legiti-
mate IP addresses for the requested domain as well as hosts
that specified empty answer sections or bogus A records.

At the beginning of our scanning activities, we find more
than 26.8 million systems to respond with NOERROR. The
number of resolvers drops to 17.8 million IP addresses over
time, a phenomenon we address later on. Resolvers speci-
fying the REFUSED error flag remain stable during our mon-
itoring, whereas the number of systems returning SERVFAIL

fluctuates between 633,393 on Dec 19, 2014 and 2,141,539
on May 30, 2014. For the remaining error codes (e.g., NX-
DOMAIN), we find a negligible number of DNS servers only.

When comparing the source IP addresses in the UDP
packets with the target addresses that were encoded in the
requested domain names, we observe 630,000 to 750,000 re-
solvers per week to respond to DNS requests that were sent
to different target hosts. Prior work has shown that these re-
solvers are either multi-homed systems or DNS proxies that
forward DNS requests to different recursive resolvers [17].

Scan Verification. We further estimate the effect of net-
works blocking our periodic DNS requests. We thus per-
formed an Internet-wide DNS scan from a secondary host in
a different /8 network and compared the number of respon-
sive systems. We find 692,283 DNS resolvers to respond to
our verification scan but not to the corresponding weekly
scan. 482,158 of these hosts (69.6%) returned SERVFAIL,
while 64,821 systems (9.4%) refused our DNS request. Ac-
cordingly, we missed 145,304 resolvers replying with NOERROR

in our weekly scan, which is < 1% of all identified resolvers.

Table 1: Resolver fluctuation per country

Resolvers (in #) Fluctuation

Country Jan 31, 2014 Feb 06, 2015 (in #) (in %)

US 2,958,640 2,537,269 -421,371 -14.2
CN 2,418,949 2,104,663 -314,286 -13.0
TR 1,439,736 976,226 -463,509 -32.2
VN 1,393,618 1,039,075 -354,543 -25.4
MX 1,372,934 1,175,343 -197,591 -14.4
IN 1,269,714 1,431,522 +161,808 +12.7
TH 1,214,042 564,482 -649,560 -53.5
IT 1,172,001 722,756 -449,245 -38.3
CO 1,062,080 677,572 -384,508 -36.2
TW 1,061,218 453,016 -608,202 -57.3

Table 2: Resolver fluctuation per Regional Internet Registry

Resolvers (in #) Fluctuation

RIR Jan 31, 2014 Feb 06, 2015 (in #) (in %)

RIPE 11,193,636 7,475,795 -3,717,841 -33.2
APNIC 10,431,352 7,878,208 -2,553,144 -24.5
LACNIC 5,136,320 3,335,895 -1,800,425 -35.1
ARIN 3,143,388 2,761,875 -381,513 -12.1
AFRINIC 1,305,747 1,193,178 -112,569 -8.6

We also compared our numbers of active resolvers to those
provided by the Open Resolver Project [27] and find the
numbers for each scan to match within a 2% error margin.

2.3 Geographical Distribution
After observing the resolvers’ landscape, we shed light

onto the geographical and network-based distribution.

GeoIP-based Statistics. We first determine the geograph-
ical distribution of the resolvers using the MaxMind GeoIP
database [26]. That is, we enumerate the number of DNS
resolvers per country at the beginning and the end of our
scans and determine the fluctuation of resolvers. Table 1
outlines the Top 10 countries hosting 49.1% of all DNS re-
solvers on Jan 31, 2014 and their fluctuation within one
year. During our measurement study, the number of re-
solvers decreased for most countries. The highest decrease
is found for Argentina with -75.0%, while the numbers also
dropped significantly for Great Britain (-63.6%) as well as
Taiwan (-57.3%). We further identify six countries in which
all DNS resolvers (up to 63 hosts per country) vanished.

While the number of resolvers declined for many countries,
we also observe opposite behavior. Besides India with an
increase of +12.7%, also Malaysia and Lebanon had signifi-
cantly more resolvers (+59.7% and +76.7%, respectively).

Table 2 outlines the resolver distribution per Regional In-
ternet Registry. The decrease in resolvers is not seen for a
single registry only, yet can be observed best for RIPE, AP-
NIC, and LACNIC, which (roughly) represent the regions
Latin America and Caribbean, Europe, and Asia-Pacific.

AS-based Statistics. We now analyze the Autonomous
Systems (AS) distribution of the DNS resolvers to get a more
detailed understanding what might have caused the drop in
resolvers during our scanning activities. We find the highest
decrease of 720,843 resolvers (-97.8%) in the network of an
Argentinean telecommunication provider, primarily causing
the high decrease of DNS resolvers in Argentina. While this
network operated 737,424 resolvers in Jan 2014, we find less
than 17,000 systems in 2015. We observe similar results
for a South Korean Internet service provider (ISP): 434,567
resolvers replied to our initial scan in Jan 2014, whereas we
find only 22 DNS resolvers in the last weekly IPv4 scan.



In total, 28 networks operated more than 1,000 DNS re-
solvers in Jan 2014 (76,973 hosts in total, i.e., 0.2% of all
identified resolvers in Jan 2014), however, not a single ac-
tive resolver at the end of our measurement study. There are
three possible explanations: (i) our requests were blocked at
the network level during the measurement period, (ii) DNS
egress or ingress filtering was added to the network, or (iii)
all actively operated DNS resolvers have been shut down.

Explanation (i) holds for 21 networks, as we still observe
active DNS resolvers in our verification scan. To distin-
guish between the other two explanations, we monitor the
fluctuation of resolvers for each weekly scan. If a network
operates ≥ 100 resolvers and we cannot find a single active
resolver in the subsequent week, we assume this network to
apply DNS filtering. For networks that have less than 100
DNS resolvers, we assume explanation (iii) to hold. For the
remaining seven networks, five networks perform DNS fil-
tering, while two seem to have shut down all servers. Note
that we chose these thresholds to allow comparisons with the
decrease in NTP amplifiers addressed by Kührer et al. [17].

For the Top 25 networks that include most of the DNS
resolvers in Feb 2015, at least 20 networks offer end user
services such as telecommunication and Internet via broad-
band. While this does not necessarily imply that all DNS
resolvers in these networks are running on consumer devices
such as modems and routers, it is a first indication that at
least a set of DNS servers might be running on devices of
broadband customers—potentially unsupervised or operat-
ing unknowingly by the end users. We thus assume that a
certain number of vanishing DNS resolvers is caused either
(i) by ISPs when introducing egress or ingress filtering of
DNS traffic for their customer IP spaces or (ii) by software
updates (such as on home routing equipment via TR-069 [8])
that—among other bug fixes—also restricted the accessibil-
ity of the DNS stub resolvers from outside the local network.

2.4 Resolver Classification
Next, we classify the resolvers according to the operated

server software and the underlying hardware specifications.

Fingerprinting DNS Server Software. On Dec 17, 2014,
we initiated an IPv4 scan using CHAOS [13] version.bind
and version.server requests to identify the DNS server
software and obtained responses from 19,925,818 open re-
solvers, of which 42.7% replied with error codes (REFUSED or
SERVFAIL) for both version requests. Further 4.6% replied
with NOERROR, however, did not specify any version in both
responses. Additional 18.8% of the responding systems re-
turned arbitrary version strings that were specified by ad-
ministrators to hide software information. As such, two
thirds of the DNS resolvers did not leak software details.

For the remaining 33.9% of open resolvers (i.e., 6,753,748
systems), we could obtain software and version information.
Table 3 illustrates the Top 10 used server software among
the responses that include version details. The majority of
these resolvers (60.2%) operate BIND (i.e., at least 20.4%
of all identified DNS resolvers). Alarmingly, not all operate
the newest BIND versions, though. For example, about 20%
of the resolvers run BIND 9.8.2, which is known to be vul-
nerable to memory-exhaustion attacks. Furthermore, two
versions of BIND (23.7%) are prone to IP range bypassing,
enabling remote attackers to circumvent IP address restric-
tions and perform requests at closed DNS resolvers. In ad-

Table 3: Results for the CHAOS version requests based on
the 6,753,748 DNS resolvers returning version information

Software Resolvers Released Deprecated CVE

BIND 9.8.2 19.8 % Apr 2012 May 2012 IP Bypass, DoS
Mem. Corr./Leak.

BIND 9.3.6 8.9 % Nov 2008 Jan 2009 DoS
BIND 9.7.3 5.7 % Feb 2012 Nov 2012 Mem. Overfl., DoS
BIND 9.9.5 5.2 % Feb 2014 Sep 2014 DoS
Unbound 1.4.22 4.8 % Mar 2014 Nov 2014 Mem. Overfl., DoS
Dnsmasq 2.40 4.6 % Aug 2007 Feb 2008 RCE, DoS
BIND 9.8.4 3.9 % Oct 2012 May 2013 IP Bypass, DoS

Mem. Overfl.
PowerDNS 3.5.3 3.2 % Sep 2013 Jun 2014 DoS
Dnsmasq 2.52 2.9 % Jan 2010 Jun 2010 DoS
MS DNS 6.1.7601 2.5 % Jun 2011 Aug 2011 DoS

dition, all Top 10 software versions are susceptible to DoS
attacks that can crash the operated DNS server software.

Fingerprinting Hardware Devices. Our next goal was
to obtain more detailed system information about the indi-
vidual resolvers such as the OS and the hardware specifica-
tions of the underlying device. The DNS protocol itself does
not provide any of this information. As such, we rely on
system information provided by other services that might
be running on a resolver. That is, we initiate FTP, HTTP,
HTTPS, SSH, and Telnet connections and analyze poten-
tially returned banner information and text fragments to
fingerprint the device [17]. Upon our connection attempts,
we obtained payload data for at least one TCP protocol for
26.3% of the responsive DNS resolvers (i.e., 5,459,524 sys-
tems). The remaining resolvers (15,307,037 servers in total)
did not offer any public TCP services for the scanned pro-
tocols that we could leverage for the device fingerprinting.

To generate fine-granular fingerprints, we manually com-
piled more than 2,245 regular expressions by closely ana-
lyzing the aggregated responses for tokens such as device
identifiers. We then aimed to find more specific informa-
tion about each device type and leveraged manuals and on-
line specifications to attribute details for fingerprinting. The
token “dm500plus login”, for example, is associated with a
DVR running a Linux-based OS on a PowerPC architecture.

Table 4 illustrates the device fingerprinting results. We
group routers, modems, and gateways in one category, as
these devices often provide overlapping functionality. Cat-
egory Embedded includes devices which we find to run em-
bedded OSes or applications (e.g., the web servers GoAhead-
Webs and RomPager) but lack information to fingerprint
the hardware more precisely. This category further includes
devices such as Serial to LAN converters or micro controller
boards such as Arduino and Raspberry Pi. We find 34.1%
of the DNS resolvers responding to our TCP requests to be
business and consumer routing devices. In particular, we
find three major manufacturers of consumer broadband de-
vices to be prevalent. For example, ZyNOS, an OS deployed
on devices of manufacturer ZyXEL, runs on 16.6% of the
DNS resolvers. Besides the large group of routing equip-
ment, we find smaller clusters such as IP-based cameras and
DVRs as well as 10,962 NAS devices and 5,061 DSLAMs, op-
erated by ISPs to provide DSL support to their customers.

2.5 IP Address Churn of Resolvers
Seeing a vast number of DNS resolvers to run on routing

equipment, we next evaluate the churn of IP addresses of
these systems. That is, we estimate the interval between



Table 4: Device fingerprinting results of the 5,459,524 DNS resolvers responding to our TCP-based requests
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Figure 2: IP address churn of DNS resolvers for 55 weeks

observing a DNS resolver in our Internet-wide scans and the
resolver changing its IP address. To this end, we enumerate
the DNS resolvers that we identified in our first scan on Jan
31, 2014 based on the observed IP addresses. In the subse-
quent weeks, we probe these 26,820,486 servers to check if
they continuously provide DNS resolutions over time.

Figure 2 outlines the ratio of DNS resolvers that remain
stable in terms of their IP addresses during our scanning
activities. The initial IP address churn is quite high—52.2%
of the DNS servers disappear within a single week. After
one year, 1,073,211 systems (i.e., 4.0% of the initially dis-
covered DNS resolvers) still offer DNS resolutions. A fifth
(19.7%) of these systems is operated in networks of a Colom-
bian (9.5%), respectively, Turkish (5.3%) telecommunication
provider and a US hosting company (4.9%), while the re-
maining resolvers are widely distributed in terms of ASes.

Observing the high IP address churn within the first week,
we measure when exactly the resolvers changed their IP ad-
dresses. In fact, more than 40% disappear within the first
day—an indicator for DNS resolvers running on devices with
low IP lease times such as consumer routing devices. To
verify our assumption, we aggregate rDNS records for all re-
solvers that disappeared after one day and match the records
against tokens indicating dynamic IP address assignment
(e.g., broadband, dialup, and dynamic). Indeed, at least
67.4% of the 1,989,502 IP addresses we find to provide rDNS
records are assigned to dynamic broadband Internet links.

2.6 Resolver Utilization
Faced with the high number of DNS resolvers we won-

dered if these resolvers are in use at all, hence providing
DNS services to actual clients. We therefore analyzed the
resolvers’ caches using DNS cache snooping [14]. That is,
we requested name server (NS) records for 15 Top Level Do-
mains (TLDs) (i.e., br, cn, co.uk, com, de, fr, in, info, it,
jp, net, nl, org, pl, and ru) every 60 minutes for 36 hours

to monitor the associated Time To Live (TTL) values. We
then checked if these TLDs were re-added to the resolvers’
caches after their expiration. This indicates that a client
performed DNS requests for domains associated with these
TLDs, causing a resolver to request information from the
corresponding AuthNSes. We do not expect to aggregate
results from each DNS resolver for the whole time due to
IP address churn. Yet, caching values for a few hours might
already reveal the desired details about a resolver’s usage.

On Nov 30, 2014, we initiated an Internet-wide scan to
identify the active resolvers and successively performed the
monitoring of the resolvers’ caches. Of the identified re-
solvers, 83.2% (i.e., 13,214,020 systems) respond to at least
one of our DNS cache snooping requests, while we suspect
the remaining hosts to become unreachable due to IP churn
in the mean-time. We find 7.3% of all resolvers to reply
with empty DNS responses instead of NS records. Addi-
tional 3.3% of the hosts send a single response for each TLD
before stopping to reply—presumably due to IP churn. For
4.0% of the DNS resolvers we obtain either a static TTL
value for each NS request or the TTL was set to value 0.

For the remaining resolvers, we flag a resolver as in use
when we indeed observe TLDs getting re-added to the cache
after their expiration. To verify that our results are not bi-
ased due to Internet-wide scans performed by other organi-
zations or research projects, we monitored incoming DNS re-
quests to our network and identified a small set of hosts that
performed DNS scanning activities. That is, we observe a
single daily DNS request initiated by the Shadowserver Foun-
dation and single DNS requests from Team Cymru and the
Open Resolver Project within our monitoring period of 10
days. These scans performed A lookup requests for three
domains assigned to two distinct TLDs. To ensure that at
least one TLD cache refresh was initiated by a real client,
we require at least three TLDs to be re-added to a resolver’s
cache during our monitoring to flag a resolver as in use. In
total, we find 61.6% of all resolvers (i.e., 9,788,740 hosts) to
be actively used, i.e., we find at least three TLDs that are
refreshed during our monitoring. 6,142,328 systems (i.e.,
38.7% of identified DNS resolvers) seem to be used fre-
quently by clients, as we find at least one TLD to be re-
added to the resolvers’ cache within 5 seconds after expira-
tion. For 4.0% of all DNS resolvers, we monitor a decreasing
TTL value for each NS request, yet did not obtain sufficient
responses to observe the caching entries to expire. Another
19.6% kept resetting the TTL values way ahead before ex-
piration. We assume that many of these resolvers either (i)
reset TTL values proactively before expiration or (ii) are
associated with groups, connected via load balancers. De-
pending on which DNS resolver handles the hourly request,
we obtain caching values from different DNS server caches.

As a follow-up of our work, one can use a more fine-grained
DNS cache snooping technique to evaluate the time gap be-
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tween recaching entries, aiming to approximate the popular-
ity of open resolvers, as suggested by Rajab et al. [28].

3. MANIPULATED DNS RESOLUTIONS
So far, we found millions of DNS resolvers that pose a

potential security threat. Not only that many of these sys-
tems are potentially susceptible to exploitation due to out-
dated DNS server software, but DNS servers are also known
to significantly contribute to large-scale amplification DDoS
attacks [17, 24, 29, 37], such as the 300 Gbps attack against
Spamhaus in 2013 [23]. However, the vast number of open
resolvers also allows us to dig closer into the behavior of DNS
resolutions world-wide. In particular, we are interested to
understand the integrity of the DNS resolutions. We thus
ask the following research question: do the open resolvers
actually operate correctly, i.e., do they strictly follow the
clearly-defined hierarchy in the Domain Name System?

We use the processing chain illustrated in Figure 3 to an-
swer this question. First, we identify open DNS resolvers
in an Internet-wide scan (step 1) and query them for a
manually-chosen list of domain names of various categories
(step 2). Afterwards, we perform a prefiltering process to
sort out the vast majority of “correct” DNS responses, i.e.,
we filter (domain ◦ ip ◦ resolver) tuples for all DNS resolver
and domain combinations for which we find the resolver to
return legitimate IP addresses (step 3). Accordingly, all
non-filtered (i.e., unexpected) responses are considered as
suspicious and grouped as “unknown”. For further analy-
ses and classification—particularly of the unexpected DNS
responses—we request HTTP(S) content (and for particular
domain names IMAP, POP3, and SMTP banner informa-
tion) for all legitimate and unknown (domain◦ ip◦resolver)
tuples in step 4. In step 5, we cluster the unexpected re-
sponses, while we manually label the resulting groups in step
6 to classify virtually all received responses. The following
subsections describe these processing steps in more detail.

Note that the DNS protocol offers various features and
record types, yet in this section we focus on name resolutions
in the IPv4 address space (i.e., A records that return IP
address information upon requesting a domain name).

3.1 Threat Model
Our threat model affects clients that use and blindly trust

DNS resolvers, which may or may not return “correct” re-
cursive DNS resolutions. With “correct” we refer to DNS
lookups that strictly follow the hierarchy, i.e., starting at
the root (.), resolving the TLD (e.g., .com.), and then iter-
atively querying the AuthNSes of a domain name to resolve
the fully-qualified domain (e.g., example.com.). In princi-

ple, we suspect the majority of actively operated recursive
DNS resolvers to follow this general resolution procedure,
yet prior work [10, 40, 41] already revealed that adversaries
tend to deploy bogus resolvers to return non-legitimate re-
sponses. This is a severe attack, as bogus resolvers have
almost complete control over the network traffic of their
clients, thus can redirect the end hosts to arbitrary IP ad-
dresses for the requested domains. In our threat model, we
thus focus on resolvers that do not follow the general DNS
hierarchy but respond with forged DNS resolutions. So far,
it is unclear to which extent these fraudulent DNS resolvers
are actively operated in the entire IPv4 address space.

Note that the threat of incorrect DNS resolutions is not
specific to open DNS resolvers only and may similarly affect
correctly-protected resolvers (i.e., DNS resolvers that only
respond to lookup requests of particular IP addresses). In
this paper, however, we focus on open resolvers, as they are
reachable to the public, and thus allow us to perform large-
scale measurements of the DNS resolutions world-wide.

Furthermore, any client system that utilizes open DNS re-
solvers is potentially threatened by bogus DNS resolutions.
This does not only affect the presumably few people who
deliberately choose these servers as their personal DNS re-
solvers. In fact, as we have seen, many resolvers operate on
networking equipment, indicating that these systems—by
default—have end users who use the provided DNS services.

In our threat model, we do not make any assumption on
specific threats that clients may face when relying on incor-
rect DNS responses. Instead, we systematically analyze the
responses and categorize the monitored threats. In general,
we can only speculate on the reasons why DNS resolvers turn
wild and return unexpected responses. For example, DNS
servers might simply be incorrectly configured or return IP
addresses of captive portals to redirect client systems to the
login page of a (e.g., wireless) network. Furthermore, re-
solvers can redirect users to search websites for misspelled
or non-existing domain names. However, there are also more
severe reasons for abnormal DNS responses, e.g., censorship
to restrict the access to certain web pages (such as adult con-
tent or social networks). Likewise, attackers might aim to
sniff on the clients’ Internet traffic by transparently proxying
the communication to the original websites. Similarly, we
imagine attackers that slightly manipulate the web content,
e.g., in order to inject advertisements or malicious code.

3.2 Datasets
For our analysis, we determine the response behavior for

various types of domain names and check whether we find in-
correct DNS responses. Assuming a malicious DNS resolver,



it is unclear for which particular domain names it manip-
ulates the answers. Clearly, in order to scale, we cannot
exhaustively query thousands of domains at millions of re-
solvers. We therefore choose a reasonable domain set by se-
lecting a few domain names from different categories. Based
on our threat model, we select domain names for various
categories that could be relevant for DNS response forgery.
For example, we selected banking domains that were tar-
geted by banking trojans via web injects in our dynamic
malware analysis platform Sandnet [30]. Furthermore, we
include DNS protection services such as operated by anti-
virus companies, which alter DNS responses for domains
associated with prevalent malware families, while the cho-
sen dating and gambling domains are censored in various
countries. In total, our domain set consists of 155 domain
names, grouped in the following 13 website categories:
• Ads: 9 domains associated with ad providers.
• Adult : 4 domains taken from the Alexa Traffic Rank-

ing [2] that provide adult content.
• Alexa: Top 20 ranked domains taken from Alexa.
• Antivirus: 15 domains of web pages and update servers

of AV and malware protection companies.
• Banking : 20 domain names of banking and credit card

websites. This includes popular online payment web-
sites such as Alipay, Ebay, and PayPal.
• Dating : 3 domains of dating sites, e.g., match.com.
• Filesharing : 5 domain names of file sharing websites,

e.g., kickass.to and thepiratebay.se.
• Gambling : 4 domains associated with online betting

and gambling such as bet-at-home.com.
• Malware: 13 domains associated with malicious activ-

ities that are knowingly listed by many common mal-
ware blacklists [18], e.g., irc.zief.pl.
• MX : 13 hostnames of IMAP, POP3, and SMTP servers

of 6 organizations offering mail services (Aim, Gmail,
Mail.me, Outlook, Yahoo, Yandex).
• NX : 8 domain names that are non-existent, 5 NX sub-

domains of popular domains such as rswkllf.twit-

ter.com, and 8 NX domains that include spelling mis-
takes or missing/additional letters or permutations such
as amason, ghoogle, and wikipeida.
• Tracking : 5 domains of user tracking libraries such as

operated by BlueCava and ThreatMetrix.
• Miscellaneous: 6 domains of update servers (e.g., Adobe

and Windows), 3 domains of intelligence agencies (NSA,
GCHQ, and Mossad), 3 domains of OAuth services
(Amazon, Google, and Twitter), and 10 individual do-
mains such as rotten.com and wikileaks.org.

Finally, we resolve a domain name, for which we operate
the AuthNSes. This domain serves as ground truth (GT) to
identify DNS servers that return legitimate IP addresses for
the GT domain but bogus or empty DNS responses for the
remaining domains in the above-mentioned domain sets.

3.3 Domain Scanning Setup
For each of the domain categories, we perform an individ-

ual scanning process to obtain DNS responses from all open
resolvers. The scanning setup resembles the setup that we
discussed in Section 2. Yet, instead of probing all IPv4 ad-
dresses, we send DNS A lookup requests for all domains in
a particular domain set (plus the GT domain) to only those
open resolvers that we identified as such by an Internet-wide
scan right before initiating the domain scan. We again em-

ploy an LFSR and highly reduce the scanning speed in order
to distribute and limit the load both on the individual DNS
resolvers and on the AuthNSes of the scanned domains.

We again encode the IP address of each target host (i.e.,
resolver) in the DNS request to differentiate between DNS
responses that specify the same source IP address in the
UDP packet, although the actual request was sent to a dif-
ferent target host. However, we cannot specify the target IP
directly in the queried domain name as conducted in Sec-
tion 2, as the set of domains is fixed. Instead, we assign each
previously identified open resolver a unique identifier. As we
find up to 20 million open resolvers in the weekly IPv4 scans
in 2015, we have to store dlog2(20, 000, 000)e = 25 bits of in-
formation in each request, reducing the number of required
bits to encode an IP address from 232 to 225. We encode
16 bits of information in the DNS transaction ID of the re-
quest, while the remaining 9 bits are encoded in the UDP
source port (i.e., we send packets using 29 different ports).
To render redundancy—some resolvers change the destina-
tion port of the DNS response for some reason—we encode
the 9 bits also in the domain name using 0x20 encoding [9]
(i.e., setting specific characters to upper and lower case).

3.4 DNS-based Prefiltering
When initiating DNS A lookup requests for 155 domains

at 20 million resolvers, we are consequently flooded with
billions of DNS responses. As we do not expect the majority
of DNS servers to provide forged responses, we aim to filter
the vast majority of legitimate answers. As such, we apply
a heuristic to determine the legitimacy of each IP address in
every DNS response. Note that at this stage we do not want
to risk filtering bogus responses but can tolerate to not filter
legitimate responses, which we can filter in a later step.

As long as domains are assigned to a fixed set of IP ad-
dresses, identifying valid DNS responses is quite easy. How-
ever, load balancing and Content Delivery Networks (CDNs)
may lead to the effect that domains point to thousands of
distinct IP addresses and answers may vary on the resolvers’
geographical location. To complicate filtering further, IP ad-
dresses assigned to a domain name may span multiple ASes.
As we request domain information from DNS resolvers lo-
cated at various places world-wide, we thus likely obtain
large sets of IP addresses for particular domain names.

To filter legitimate DNS responses and reduce the initial
set of replies to a reasonable size, we apply multiple filtering
methods. For non-existing domains, we filter responses that
either return NXDOMAIN or return NOERROR without specify-
ing any IP addresses in the answer section. DNS responses
for existing domain names are filtered when we find each re-
turned IP address to match one of the two following criteria:

(i) We perform a DNS A lookup at (trusted) recursive re-
solvers and find the IP in question to be located in the
same ASes as the IP addresses we resolved ourself.

(ii) A rDNS record is assigned to the IP address. If the
domain part of the record resembles the requested do-
main, we filter the IP address. However, as rDNS
records can be set to arbitrary domains even without
owning the domain, we further require that an A lookup
request of the rDNS record returns the IP in question,
as only the domain owner can set up the A record.

Using these filtering rules, we identify legitimate IP ad-
dresses for domains that are located in one or a few net-
works only. Yet, we miss IP addresses of CDN providers



that are not located in the providers’ primary networks but
distributed in various networks world-wide. For example,
Akamai is directly associated with at least 8 ASes, yet also
distributes their content in several other ASes. In order to
find IP addresses that belong to CDN providers, we request
HTTPS certificate information at all previously-unfiltered
IP addresses using the domains for which these IP addresses
were returned. More specifically, we perform two HTTPS
requests for each (domain◦ ip) pair we find in (domain◦ ip◦
resolver) tuples—the first with the TLS Server Name Indi-
cation (SNI) extension enabled, while we disable SNI in the
second request to also obtain the default certificate delivered
by a web server. We only consider an IP to be legitimate, if
a valid and known certificate was returned for the requested
domain name. For the largest CDN providers, we further
consider an IP address to be valid, if the non-SNI certificate
is legitimate and includes a particular common name.

Note that we might not identify each legitimate DNS re-
sponse for every queried domain name, as some IP addresses
could still be valid, even though none of our filtering rules
applied. Furthermore, we do not want to risk filtering bogus
DNS responses but can tolerate to not filter legitimate re-
sponses. As such, the resulting dataset of “unknown” DNS
responses might also include legitimate IPs, yet these can be
filtered in a later step (i.e., by analyzing the served content).

3.5 Data Acquisition
Prefiltering supports us in eliminating the vast majority

of legitimate responses. For all remaining (i.e., mostly unex-
pected) responses, we mimic a client system that utilizes the
“abnormal” resolvers to aggregate data for further analyses.

To aggregate HTTP data, we use the IPs returned by the
resolvers upon resolving the domains and request HTTP in-
formation as if they belong to the original website that we
tried to contact. That is, we request HTTP and HTTPS
content by impersonating a client using the Mozilla Firefox
web browser (version 28.0) for all (domain ◦ ip ◦ resolver)
tuples we could not classify as legitimate during our prefilter-
ing phase. If HTTP content includes redirections or frames
(i.e., an <iframe>), we follow these redirections two times
at most. If content redirects to further (sub-)domains, we
resolve these new domain names at the DNS resolver that
returned the initial (domain ◦ ip ◦ resolver) tuple. Note
that our succeeding analyses are performed on the plain
HTTP(S) payload data, i.e., we do not execute JavaScript.

For the MX domain set (cf. Section 3.2), we further initi-
ate IMAP, POP3, and SMTP connections to the respective
IP addresses to aggregate banner information for analysis.

We furthermore obtain a list of (domain ◦ ip ◦ resolver)
tuples from our own (trusted) DNS resolvers for all domain
names in the scanned domain set. Similar to the previ-
ous steps, we aggregate HTTP(S) (and IMAP, POP3, and
SMTP) content for this legitimate dataset. The resulting
payload data serves as ground truth to allow comparisons
with potentially-malicious and benign responses.

3.6 HTTP Data Analysis
The HTTP data acquisition leaves us with huge datasets

for further analysis. We aim to analyze the aggregated pay-
load data as exhaustively as possible, however, given mil-
lions of HTTP responses, this is not feasible using a purely-
manual process. We therefore use unsupervised learning to
group similar responses. Later on, we manually analyze the

resulting groups and augment them with descriptive labels.
In the following, we describe this procedure in more detail.

Coarse-Grained Clustering: Grouping Similar HTTP
Responses. In a first step, we aim to shrink the scale of
the HTTP payload data that we need to manually inspect.
We decided to use agglomerative hierarchical clustering, an
unsupervised machine learning technique, which helps us to
group similar responses into clusters. Hierarchical clustering
is known to be helpful for inspecting the clustering results
(e.g., using the dendrograms) and enables the analyst to un-
derstand the clustering steps (e.g., via the distance matrix).

In addition, hierarchical clustering allows us to define a
custom distance function to measure the similarity of two
individual HTTP responses. We deploy seven normalized
features of equal weight as part of our distance function:
• Length difference of the HTTP response body as a first

coarse-grained comparison feature.
• Jaccard distance (i.e., A∩B

A∪B
) for multisets with the set

of HTML tags in the HTTP payload.
• Edit distance between the sequence of opening HTML

tags, whereas we convert each HTML tag to a 2-byte-
long identifier to normalize all tags. In contrast to the
previous tag multiset comparison, this feature also con-
siders the order of the elements. It reflects the struc-
tural similarity between two web pages
• Edit distance on the <title> value. We focus on the

title only for content comparison as it is rather con-
stant. We do not consider any other texts, as these
could highly differ for dynamic web pages.
• Edit distance of all JavaScript code. The motivation

here is that many websites largely rely on JavaScript
(e.g., AJAX) to control the content of the page.
• Lastly, each individual feature focuses on (i) embed-

ded resources and (ii) outgoing links, respectively. Re-
sources and links can be used to attack or track visi-
tors. We compute the Jaccard distance for all embed-
ded resources (i.e., the values of src="" attributes),
and for outgoing links (i.e., the values of href="" at-
tributes), respectively.

Clustering assists us in grouping similar representations
of certain web pages, deliberately ignoring most of the (pos-
sibly dynamic) HTML content. In addition, clustering is
tolerant to slight changes in the page structure. Similar in-
stances are grouped using average linkage. This way, we
can label all instances in a cluster once the cluster has been
identified, largely reducing the manual inspection effort.

Fine-Grained Clustering: Finding Page Modifica-
tions. While our coarse-grained clustering step is helpful
to group similar websites, it also abstracts from slight mod-
ifications in the HTML structure. This can be problematic,
as we are interested in cases where a potential adversary uses
a known representation of a website and modifies it. There-
fore, we also use clustering to analyze the difference of web-
sites compared to the respective legitimate representations
(i.e., comparisons to the ground truth). The key idea is to
find small, possibly malicious modifications (e.g., JavaScript
injections) that were done to the original representation.

To this end, we first use the diff utility to find the ex-
act differences between an unknown response and the legit-
imate representation(s) of a website. If we have multiple
legitimate representations, we select the ground truth with
the highest similarity for further processing. From the exact
difference, we then extract which HTML tags were added



and removed—the smaller these sets, the fewer modifica-
tions were done to the website. Again, we aim to group
responses, but this time we are interested in similar modi-
fications. We thus use hierarchical clustering based on the
Jaccard distance for multisets for the tag differences between
the unknown response and the (most similar) GT response.

4. EVALUATION ON BOGUS RESOLVERS
In the following, we present the findings of our analyses

on open DNS resolvers. Our data is based on domain name
scans and data aggregation between Jan 15 and Feb 10, 2015.

4.1 DNS-based Prefiltering
In the prefiltering process, we identified 85.8% (MX do-

main set) to 93.2% (AV set) of the aggregated DNS re-
sponses for the scanned domain sets (cf. Section 3.2) to be
legitimate, considerably reducing the number of DNS re-
sponses we need to further analyze. Furthermore, 4.9–8.4%
of the responses did not specify any IP addresses in the an-
swer section. The highest value was observed for the Mal-
ware set, partially caused by DNS resolvers that aim to pro-
tect clients from accessing malicious domains. The number
of unexpected (domain◦ ip◦resolver) tuples ranges between
0.6% of all responses for the MX dataset and 4.4% for the
Malware dataset, with a single exception for NX with 13.7%
of unexpected responses. In total, we obtained 86,655,560
unexpected DNS responses (this does not include the empty
DNS replies) from 19,180,169 distinct resolvers. Note that
the high number of resolvers is caused by IP churn in combi-
nation with distributing our scanning activities over several
days, as we often observed suspicious resolvers to switch to
different IP addresses in the same ISPs’ address spaces.

Up to 15.1% of the suspicious DNS resolvers for a par-
ticular domain set return their own IP for at least a single
domain name. Moreover, 8,194 resolvers return their IP
address for each requested domain in at least 75% of our
domain sets. 5,404 of these IP addresses (65.9%) redirected
to login web pages of routing equipment, distributed by two
major manufacturers, while further 574 IPs (7.0%) are as-
signed to a specific brand of IP-based cameras. 50.4% of all
suspicious DNS resolvers (i.e., 9,659,437 hosts) return the
same set of IP addresses for more than one domain. In the
extreme, 4.4% of all suspicious resolvers return even a single
static IP address regardless of the domain name we queried.
Further 2.0% return only NS records for the requested do-
main names, i.e., effectively denying recursive lookups.

4.2 HTTP Response Classification
When aggregating HTTP content for all unexpected DNS

responses, we could obtain HTTP payload data for 88.9%
of the (domain ◦ ip ◦ resolver) tuples. For the remaining
11.1% of tuples, we observe up to 65.1% of the suspicious
DNS servers to return LAN IP addresses, while up to 32.2%
replied with IP addresses located in the same AS or /24 net-
work as the resolver. By taking a closer look at the rDNS
records associated with these IP addresses we suspect some
of the systems to belong to captive portals, which serve the
actual login page to clients in specific IP ranges only. We
verified other IP addresses to be associated with particular
CDN providers (i.e., by checking AS and rDNS information).
We assume these content servers to be disabled and not dis-
tributing actual HTTP(S) payload data, at least at the time
of requesting content for our analysis. As such, certain re-
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solvers might have delivered outdated IP address informa-
tion for domain names associated with CDN providers.

For non-legitimate tuples which provided HTTP data, we
were able to classify 97.6–99.9% of the HTTP content. In
fact, we classified over 99% of the responses for all but one
domain category, indicating a close-to-exhaustive coverage
of our analysis. Our clustering mechanism helped to group
similar HTTP responses and served as data exploration step
to further categorize the results. That is, we assigned labels
to each individual cluster and mapped these labels to website
categories that classify the type of served HTTP content.
Table 5 summarizes these classification results. We mapped
the response labels according to the following six categories:

Blocking. This category consists of websites to which a
client system is redirected when the requested domain name
has been blocked. This includes landing pages of multiple
providers (e.g., parental control, ISPs or security organiza-
tions) when accessing forbidden or malicious content. We
observe this type of data particularly for malware domains
(e.g., 12,543 systems, i.e., 21.4% of the suspicious resolvers
for the Virut domain irc.zief.pl, redirected to IP ad-
dresses to block the respective requests) and dating domains
(e.g., 6,961 resolvers blocked the dating page okcupid.com,
i.e., 10.9% of the suspicious DNS resolvers for this domain).

Censorship. We observe hundreds of thousands of suspi-
cious resolvers to respond to requests of specific domains
with a small set of IP addresses which we identified as land-
ing pages for censorship. To distinguish between ordinary
blocking and censorship, we closely analyzed the HTTP con-
tent and the behavior of the resolvers. If we find HTML
content to specify text fragments such as blocked by the

order of [...] court/authority, we flag the IP to be as-
sociated with censorship. We manually verified that the 299
IPs of landing pages are related to 34 different countries.

Next to the landing pages, we identified another type
of censorship. When analyzing the legitimate and unex-
pected responses for particular domain names, we observe a
conspicuous distribution of countries for the corresponding
DNS resolvers. Figure 4-a illustrates that DNS resolvers are
widely distributed in terms of geographical location for the
combined set of DNS responses for Facebook, Twitter, and
YouTube. When isolating the unexpected DNS responses,
we find the majority of DNS servers to be located in China.



Table 5: Clustering and labeling results of the HTTP payload data for unexpected (domain ◦ ip ◦ resolver) tuples
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Blocking 0.3 2.2 0.7 0.3 0.4 6.2 3.1 3.7 0.2 9.0 0.9 0.9 1.9 0.6
(0.5) (3.3) (2.5) (0.4) (1.0) (10.9) (6.5) (6.4) (0.2) (21.4) (4.8) (1.9) (16.2) (2.2)

Censorship 10.8 88.6 19.1 0.1 0.1 31.8 36.5 75.9 0.1 0.8 8.4 0.1 3.2 0.1
(96.2) (91.3) (97.1) (0.1) (0.1) (87.3) (91.3) (90.4) (0.1) (8.1) (92.5) (0.2) (37.1) (0.1)

HTTP Error 48.1 5.2 45.8 57.0 55.4 34.8 32.6 15.8 55.0 29.8 50.8 57.0 24.7 57.0
(70.4) (6.9) (63.9) (75.0) (63.5) (50.1) (52.0) (49.8) (56.0) (53.7) (71.1) (65.9) (55.8) (69.4)

Login 12.2 1.2 12.8 15.5 16.8 10.2 9.5 1.9 16.1 9.5 14.3 17.0 2.8 12.5
(16.8) (1.6) (19.1) (17.4) (19.6) (15.4) (15.1) (3.9) (17.2) (17.2) (18.5) (19.8) (9.4) (16.2)

Misc. 11.5 0.9 5.3 5.9 5.0 3.2 4.9 0.7 5.1 3.3 5.1 5.0 8.5 11.2
(56.4) (1.6) (21.6) (16.2) (10.5) (4.8) (12.5) (1.4) (5.8) (5.6) (9.7) (5.8) (19.7) (5.5)

Parking 17.1 1.8 16.1 21.2 22.2 13.8 13.4 2.0 23.4 26.2 20.5 20.0 23.2 18.6
(23.9) (2.4) (24.0) (25.0) (24.3) (21.5) (22.4) (2.4) (23.9) (92.1) (83.6) (23.4) (42.4) (24.0)

Search 0.0 0.1 0.2 0.0 0.1 0.0 0.0 0.0 0.1 21.4 0.0 0.0 35.7 0.0
(0.1) (0.1) (2.7) (0.1) (0.1) (0.1) (0.0) (0.0) (0.6) (69.3) (0.5) (0.1) (65.1) (0.0)

Interestingly, 2.4% of the Chinese resolvers (125,660 hosts)
returned multiple DNS responses for particular domains:
the first response specified a forged IP, while the second
includes the legitimate IP address(es) for the requested do-
main, yet arriving a few milliseconds after receiving the bo-
gus response. This effect is caused by the Great Firewall of
China [3, 22, 42], which injects forged DNS responses upon
monitoring DNS requests in the network traffic. Succeeding
experiments underpin this assumption, as we obtain arbi-
trary IPs for specific domains when sending requests to ran-
domly chosen IP ranges in Chinese networks, while request-
ing other domains does not trigger any response. We thus
assume the Great Firewall of China to not modify responses
of DNS resolvers but inject forged replies that (likely) arrive
before the legitimate DNS responses at the client-side.

Figure 4-b outlines that 83.6% of the suspicious resolvers
found for the domains Facebook, Twitter, and YouTube
(i.e., 5,235,827 systems in total) are located in China, ap-
parently returning randomly-chosen IP addresses. Further
805,559 systems (i.e., 12.9% of the suspicious resolvers for
the three domains) are associated with Iranian censorship.

Besides China and Iran, we find more than 3 million re-
solvers that support censorship in other countries. More-
over, 491,032 resolvers (i.e., 74.2% of the hosts returning
unexpected IP addresses for adultfinder.com) are associ-
ated with Indonesian censorship. Further 90.6% of the sus-
picious resolvers for domain youporn.com (696,777 systems
in total) redirected to hosts that belong to Turkish (52.9%),
Indonesian (29.3%), and Malaysian (8.4%) censorship. Yet,
we also find Italian and Russian resolvers to be prevalent for
Filesharing and Gambling domains. 92.1% of the suspicious
resolvers for rotten.com (813,183 resolvers in total) are as-
sociated equally to Indonesian and Turkish censorship. For
the domain blogspot.com, 396,681 resolvers (i.e., 88.5% of
all suspicious DNS resolvers found for this domain name)
redirected to IP addresses linked to Indonesian censorship.

Observing the prevalence of censorship in various coun-
tries, we wondered whether we observe all DNS resolvers
located in a particular country to comply with censorship,
indicating a strict policy or a government-controlled censor-
ship system. We thus enumerated all resolvers that returned
legitimate and unexpected responses by their geographical
location and checked whether we find any DNS resolvers in

a country to return legitimate responses, while others redi-
rected to IP addresses assigned to censorship mechanisms.

For China, we indeed observe a high coverage: 99.7% of
the Chinese resolvers returned bogus responses for Face-
book, Twitter, and YouTube. For all other censoring coun-
tries, including Asia and Europe, we observe a lower cover-
age of blocking resolvers. 78.9% of the Mongolian resolvers
blocked each of the four adult domains. For Indonesia, we
observe varying numbers of resolvers blocking individual do-
mains: a single adult domain is blocked by 91.6% of the In-
donesian resolvers, while only 28.7% of the resolvers block
another gambling and adult domain. In Europe, 83.9% of
the Greek and 78.6% of the Belgian DNS resolvers restricted
access to two gambling domains. Similarly, 69.3% of the Ital-
ian resolvers comply with censorship by blocking multiple
online betting domains. Finally, 10.0% of the Turkish DNS
resolvers did not censor otherwise-blocked domain names.

HTTP Error. This category includes web servers that ei-
ther return HTTP error codes (4xx, 5xx), respectively, error
pages indicating invalid requests. Except for the domain
sets Adult and Gambling—for which we find the majority of
resolvers to return IP addresses assigned to censorship—an
average of 40.6% of the suspicious resolvers per domain set
directed to systems that serve various types of error pages,
indicating that the requested content could not be found.

Login. About 10.9% of the suspicious DNS resolvers per
domain set direct users to login websites, ranging from cap-
tive portals of ISPs, hotels, and educational institutions to
router login pages and web mail logins. We observe 91.7% of
the suspicious resolvers assigned to this category to forward
client systems to login pages of routing equipment, manu-
factured by two large distributors of networking devices.

Parking. This category includes landing pages of park-
ing providers, domain resellers, and hosting companies of-
fering similar services. Parking can be observed most for
the Malware domain set. 92.1% of the suspicious DNS re-
solvers for two of three Chinese domains in the Malware set
(i.e., 1,371,67 systems) returned IP addresses that are linked
to parking. It is known that domain resellers and park-
ing providers tend to re-register malicious domain names to
monetize the traffic [18, 20]. Yet, 261,116 systems (83.6%
of the suspicious DNS resolvers for torproject.org) also
redirect to parked content upon requesting this domain.



Search. The Search category groups all redirections to le-
gitimate or mimicries of search pages. Responses like this
are common for NX domain names—we find 35.7% of the
suspicious DNS resolvers to redirect to search websites. Sim-
ilar results were also observed for six out of 13 malware
domains—even though these domains were existing when
performing our scans. Similarly to parked domains, search
websites might embed ad banners to monetize the traffic.

4.3 Miscellaneous Case Studies
Most of the HTTP content that was delivered by IP ad-

dresses in the non-legitimate DNS responses could be as-
signed to one of the categories outlined in Table 5. Yet, our
in-depth analyses of HTTP(S), IMAP, POP3, and SMTP
payload data also enabled us to classify content that was re-
turned by a low number of suspicious resolvers. For reasons
of brevity, we highlight the most interesting cases only.

Ad Redirects / Injections. We observe 281 suspicious
DNS resolvers to return four IP addresses that redirected,
respectively, replaced ad traffic of two large advertisement
providers. Two of these hosts inject ad banners directly into
the HTML content, while the other two IP addresses serve
suspicious JavaScript code. We identify seven IP addresses
from 14 suspicious resolvers that block ad traffic on pur-
pose by replacing the ad banners with empty placeholders.
Furthermore, two IP addresses were returned by seven DNS
resolvers that serve content similar to the Google search web
page, yet embedding ad banners underneath the search bar.

Transparent Proxies. We identify 20 IP addresses to act
as proxies for all domain names, providing the same content
as obtained from the original websites. We distinguish be-
tween proxies that support TLS encryption and provide the
original certificate, and proxies that do not offer HTTPS.
For proxies that forward valid certificate information for the
requested domain names, we observe 99 DNS resolvers to
return the associated 10 IP addresses. TLS prevents a po-
tential eavesdropper from reading the actual content, yet
traffic analysis may reveal insights to an adversary [11, 35].
In contrast, HTTP-only proxies might immediately eaves-
drop on the communication channel, e.g., to sniff for cre-
dentials of login pages. We find 10,179 suspicious resolvers
to return 10 IP addresses that proxy the original content,
without accepting HTTPS requests. While we do not sus-
pect all of these hosts to be malicious, users risk disclosing
sensible login credentials when relying on these servers.

Phishing. Next to the proxies that serve original content
for all requested domains, we also observe 39 hosts returned
by 1,360 resolvers that provide content for particular do-
mains only—potentially phishing for credentials. For Pay-
Pal, 176 resolvers served 16 IPs that provide content similar
to the PayPal website. Yet, when investigating the HTML
structure, we could reveal a phishing attempt: the body
consists of 46 <img> tags reproducing the PayPal website
and an HTML form that attempts to forward the entered
login credentials to a php file via HTTP POST. Three of these
servers accept HTTPS connections with self-signed certifi-
cates. Moreover, two suspicious phishing servers mimic an
Italian banking domain. The first server is returned by 285
DNS resolvers and located in a Brazilian network. The sec-
ond host is returned by 46 DNS resolvers and located in
Russia. While the legitimate banking domain solely accepts
HTTPS requests, none of the suspicious IP addresses does.

Mail Servers. We observe 64.7% of the suspicious DNS
resolvers for the MX domain set to redirect to 1,135 IP ad-
dresses that listen to mail communication via IMAP, POP3,
or SMTP. While we do not find any evidence of mail servers
actively harvesting for login credentials (i.e., by attempting
to log in with fake credentials and sending emails), attack-
ers could secretly sniff on traffic. For Gmail and Yandex,
we observe eight resolvers to point to IPs that provide sim-
ilar or exactly the same banner information for SMTP as
monitored for the legitimate SMTP servers. However, these
bogus IPs are located in different networks (e.g., a Chinese
research network), indicating that these might be suspicious.

Malware. Finally, 228 DNS resolvers redirect client sys-
tems to 30 distinct IP addresses that provide content simi-
lar to Adobe Flash and Java update pages, convincing the
user to install potential software updates. We found these
executables to be linked to malicious software. That is, we
analyzed the samples dynamically and observed them to at-
tempt downloading further (potentially malicious) executa-
bles. In line with our observations, the majority of anti-virus
vendors classified these samples as malware downloaders.

5. DISCUSSION
We now discuss limitations of our methodology and con-

ducted analyses, respectively, the DNS protocol in general.

Completeness. Performing Internet-wide DNS analyses
implies several limitations on the significance of the obtained
network data. First, DNS is a UDP-based protocol. As
such, we might not obtain a response for each of our DNS
requests due to packet loss. Second, a DNS packet might be
corrupted, i.e., the checksum of the underlying UDP packet
is invalid. As we do not know which part of the packet is
bogus, we ignore invalid packets in all of our analyses. Also,
our analyses are limited to open resolvers, while there is no
reason to assume that closed resolvers do not likewise ma-
nipulate resolutions. Analyzing such resolvers, however, re-
quires in-network measurement points such as Netalyzr [16].

Another concern regarding completeness is IP churn. DNS
resolvers associated with dynamic broadband Internet links
might be enumerated multiple times when they occasionally
switch to IP addresses that are scanned in the later course of
a DNS scan. Further, we might miss (parts of) the DNS re-
sponses in our domain scans when DNS resolvers become un-
available. Determining the error rate, however, is unfeasible
as resolvers might simply ignore particular requests, as ob-
served for censorship or badly configured resolvers. Hence,
we cannot distinguish between requests that are unanswered
on purpose or due to the above-mentioned limitations. Fur-
thermore, the number of identified resolvers fluctuates per
day and time we perform our scans. As such, when initi-
ating multiple IPv4 scans on the same day, the number of
active resolvers might differ due to the various geographical
locations and time zones. To cope with these limitations,
we adjusted the rate of outgoing DNS requests to achieve
a low packet loss and started our weekly scans at the same
time (on Friday evenings CET). To reduce the impact of IP
churn, we scanned the domains in a timely manner, i.e., the
delay between an Internet-wide scan and the aggregation of
HTTP data (and potentially requesting further domains at
these resolvers upon redirections) was at most 8 hours.

In order to scale, our domain set is limited to 155 do-
main names of 13 different categories that could be relevant



for DNS response forgery. As such, our dataset is far from
complete and we consequently miss suspicious activities for
domains that are not covered by the set. Performing anal-
yses on dozens or hundreds of additional domains, however,
would significantly increase the impact on the individual re-
solvers as well as the amount of data that needs to be pro-
cessed in a timely manner. Furthermore, the dataset would
still remain incomplete, as attackers may choose arbitrary
domain names to perform suspicious or malicious activities.

Our evaluation results are constrained to suspicious DNS
activities performed in the period from Jan 15 to Feb 10,
2015, thus rather represent a snapshot of the DNS threat
landscape. Repeated analyses could have been performed,
however, we refrained from doing so for multiple reasons.
First, as we aimed to obtain a detailed understanding of all
suspicious DNS resolvers in IPv4 at once, we performed one
large evaluation instead of conducting (repeated) smaller
analyses on subsets of open resolvers, which would increase
the impact on these servers. Second, we assume that re-
peated analyses will only provide minor changes in the DNS
threat landscape, thus do not justify repeated scanning.

Finally, we used heuristics and clustering to group DNS
and HTTP responses. This way, we could label about 99% of
the responses, leaving a minor percentage unclassified. We
argue that the remaining responses represent rather uninter-
esting behavior, as attackers typically strive for larger cov-
erage (thus would have been identified in our analyses). We
still manually investigated a random sample set of the un-
classified HTTP responses and found them to be associated
with personal, shopping, or similar categories of websites.

Illegitimacy. Multiple IP addresses acted as an HTTP(S)
proxy between a client system and a web server of the re-
quested domain name. As such, we obtained similar or the
same HTML content as provided by the legitimate IP ad-
dress(es). By analyzing the HTTP payload of websites only,
we are limited to identifying IP addresses that could poten-
tially be performing malicious activities. That is, we have
no evidence of eavesdropping activities, yet attackers could
trivially sniff on traffic (especially for HTTP-only proxies).

We queried dozens of domain names at millions of open
DNS resolvers, causing network traffic which might unin-
tentionally harm a remote network. Within our long-term
empirical measurement study of DNS resolvers, however, we
have not received a single abuse complaint that our Internet-
wide scanning activities caused a congestion of either an
open resolver or an AuthNS of a scanned domain. As such,
we assume the combination of rate-limiting the outgoing
DNS requests and distributing the sequence of target IP ad-
dresses over time using an LFSR to be reasonable in practice.

In addition, one has to be careful judging certain politically-
driven actions (such as censorship) as “malicious”. Toler-
ating the constitutions and cultures of other countries, we
merely provide our rational insights and technical inputs.

DNS Authenticity. The DNS protocol—in general—does
not deploy any security measures to validate the data au-
thenticity of DNS responses, hence security extensions such
as DNSSEC [5] have been proposed and implemented. It yet
has to be evaluated whether the DNS extensions also pro-
tect against strong“adversaries”such as the Chinese firewall,
which inject forged DNS responses that arrive way ahead of
the legitimate replies at the requesting clients. As a resolver
typically utilizes the first response that matches an open
transaction (and ignores succeeding responses), DNSSEC

does not effectively protect against this kind of attack un-
less the client waits for a correctly signed DNS response
and drops all previously incoming unsigned and incorrectly
signed replies [5, 6, 43]. Yet, this strategy can be deployed
only when either (i) all domains globally deploy DNSSEC, or
(ii) the client gained previous knowledge that the particular
domain indeed supports DNSSEC, thus only a signed DNS
response is acceptable at all. As of May 2015, the global cov-
erage of DNSSEC was rather low [21, 37, 38], e.g., less than
0.6% of the domains associated with the .net TLD operated
DNSSEC. Further, there is no reliable way for a client to
determine the state of the DNSSEC deployment for specific
domains (except by performing DNS requests and check the
replies—yet these could also be forged). As such, the DNS
protocol and its security extensions may require improve-
ments to cope with attacks or censorship measures such as
packet injections conducted by the Great Firewall of China.

6. RELATED WORK
This work is inspired by the analysis of corrupted DNS

resolution paths by Dagon et al. [10] in 2008. The au-
thors analyzed DNS resolutions of 600,000 open resolvers for
84 domain names to identify suspicious responses. Similar
to our work, they requested A records for various banking,
antivirus, and search engine websites. The aggregated re-
sponses, however, were analyzed and presented rather coarse-
grained, i.e., the authors performed a manual analysis on
250 randomly sampled web pages only and did not pro-
vide detailed statistics about their findings—except illus-
trating a limited number of categories such as Chinese splash
pages. Furthermore, it remains rather unclear how the au-
thors identified the legitimate IP addresses of each domain,
particularly important when filtering IP addresses of CDNs
that may span hundreds of ASes. In our work, we outline our
prefiltering and identification of legitimate IP addresses in
detail and perform a more fine-granular and thorough anal-
ysis of the unexpected DNS responses to cluster and clas-
sify non-legitimate DNS responses accordingly, resulting in
a more comprehensive overview of the DNS resolver behav-
ior. As such, we are the first to perform an in-depth analysis
of incorrect DNS resolutions provided by all open DNS re-
solvers operated in the entire IPv4 address space. That is,
we were capable of labeling about 99% of the obtained DNS
and HTTP responses, achieving fine-granular classification
results on the DNS resolution paths of open DNS resolvers.

Prior work by Weaver et al. [40, 41] analyzed DNS traffic
aggregated from Netalyzr sessions, a Java-based applet run-
ning on individual client systems of volunteers. The authors
mostly focused on DNS error monetization—a technique to
redirect clients to ad websites upon requests for non-existent
domains. Yet, the authors also observed sessions, in which
DNS resolvers redirect clients to websites of malicious char-
acter or deliberately disabled the resolution of the Windows
update website to prevent system updates. Unfortunately, it
remains unclear how the authors identified the correspond-
ing DNS servers to block the update page on purpose and
not due to erroneous configurations. The results further pro-
vide rather little insight, as the analyses were conducted on
limited DNS traffic, and as such the number of analyzed
DNS resolvers was low. Contrary, we perform a large-scale
analysis on all resolvers in the entire IPv4, achieving a more
detailed insight to the resolvers’ landscape. Still, a benefit
of the approach proposed by Weaver et al. is the detection of



suspicious and malicious DNS resolutions caused by closed
DNS resolvers, while we have to stick to the analysis of open
DNS resolvers only. Combining both approaches thus pre-
sumably increases the detection of forged DNS resolutions.

We group further related works by their topic.

Measurements on the DNS Protocol. A large body of
work exists on analyzing DNS resolvers [1, 4, 25, 33]. Most
of these analyses are conducted on a small subset of all re-
solvers. As such, it is unclear if the observed results gener-
alize to all resolvers world-wide. Sisson [34] analyzes open
resolvers based on sampled scans that repeatedly query the
same set of resolvers, thus covering only a small fraction of
all open resolvers. We omit a detailed comparison, as Sis-
son scans only known AuthNS and resolvers contacting their
AuthNS, therefore relying on a non-random sample. Over-
all, their measurements cover less than 0.2% of the resolvers
in our dataset. Jiang et al. [15] analyzed the caching behav-
ior of resolvers. The authors identified an attack vector in
DNS software that allows to extend the caching of domains
even after they have been removed from the upper DNS
hierarchy. Schomp et al. [31] randomly probed the IPv4
address space to enumerate DNS resolvers and distinguish
between recursive DNS resolvers and DNS proxies. Further-
more, the authors closely analyzed the caching behavior of
resolvers in more detail. Similar to our work, the authors
performed device fingerprinting of the identified DNS re-
solvers, yet without providing an overview of the results.
The authors further focused on device information provided
by the HTTP header only, thus missing various device cate-
gories, e.g., provided by the HTTP body, respectively, other
protocols such as FTP and Telnet. Takano et al. [36] per-
formed measurements based on responses for Internet-wide
CHAOS version.bind requests. The authors primarily fo-
cused on DNS server software and their distribution in each
Regional Internet Registry. Contrary to our work, no device
fingerprinting was conducted. Concurrent to our work, Scott
et al. [32] probed the IPv4 address space for open resolvers to
analyze DNS resolutions. Instead of focusing on suspicious
DNS resolution paths, the authors queried the Top 10,000
Alexa domain names at the identified resolvers to analyze
the infrastructure of Content Delivery Networks. By deploy-
ing automated clustering mechanisms, they were capable of
accurately detecting CDN deployments in their scanning re-
sults. Contrary, we performed the identification of CDNs
by leveraging AS, rDNS, and HTTPS certificate informa-
tion in our prefiltering step. Combining both techniques
could improve the detection capabilities of CDNs and thus
the effectiveness of our prefiltering, reducing the amount of
unfiltered but legitimate DNS responses that needs to be
processed in the latter processing steps.

Censorship. Bailey and Labovitz [7] provided an over-
view of various countries restricting access to certain web-
sites. Verkamp and Gupta [39] focused on how censorship
is technically implemented. By using PlanetLab nodes and
personal contacts in various countries, the authors identi-
fied all eleven examined countries to perform censorship, ei-
ther by filtering at the DNS-level or directly on URLs and
keywords. In contrast, we obtained responses directly from
arbitrary DNS resolvers world-wide. As such, our results
are not derived from a limited number of hosts per coun-
try. Levis [19] focused on censorship conducted by injecting
forged DNS packets into network traffic, e.g., performed by

the Great Firewall of China [3, 22, 42]. The author claims
that Chinese censorship may not only affect clients in China
but also systems in other countries when their DNS traf-
fic is routed through China via transit—an observation we
can confirm for our datasets. Apart from China, similar
behavior is also observed for other countries, e.g., 56.9% of
the Estonian DNS resolvers respond with IP addresses for
gambling domains that we assigned to Russian censorship.

Internet-wide Scanning. Durumeric et al. [12] proposed
ZMap, a high-speed application to run Internet-wide scans.
While we do not leverage ZMap for our scans, we apply many
of the guidelines and techniques. Rossow [29] and Kührer
et al. [17] performed Internet-wide scans for multiple UDP-
and TCP-based protocols to identify and monitor systems
that are prone to abuse for amplification DDoS attacks.

7. CONCLUSION
In this paper, we studied the landscape of DNS resolvers

on long term, i.e., we analyzed empirical data of Internet-
wide DNS scans we performed for more than one year. More
precisely, we analyzed the fluctuation of DNS resolvers over
time and classified the resolvers according to the operated
DNS server software, underlying hardware specifications,
and their utilization by actual client systems. To analyze
further attack vectors in the Domain Name System, we took
the viewpoint of a client system and determined the re-
sponse authenticity and integrity of all open DNS resolvers
in the entire IPv4 address space. By performing billions of
DNS lookup requests for 155 domains at millions of open re-
solvers, we identified millions of resolvers that deliberately
manipulated DNS resolutions and returned unexpected IP
address information. Besides legitimate redirections (e.g.,
to captive portals such as router login pages), our analy-
ses revealed thousands of resolvers that manipulated DNS
resolutions to censor communication channels, inject adver-
tisements, serve malicious files, or perform phishing. As
such, the DNS protocol does not only have flaws at the
network-level in terms of traffic amplification vulnerabili-
ties [17, 24, 29] but also lack verification mechanisms at the
application-level to sufficiently protect end hosts from mali-
cious resolvers that redirect clients to suspicious content.
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