
IoTPOT: Analysing the Rise of IoT Compromises

Yin Minn Pa Pa†1, Shogo Suzuki†1, Katsunari Yoshioka†1, Tsutomu Matsumoto†1,
 Takahiro Kasama†2, Christian Rossow†3

†1Graduate School of Environment and Information Sciences/Institute of Advanced Sciences
†1 Yokohama National University, Japan

 †2National Institute of Information and Communications Technology, Japan
†3Institute of Advanced Sciences, Yokohama National University, Japan and

†3Cluster of Excellence, MMCI, Saarland University, Germany

Abstract
We analyze the increasing threats against IoT devices.
We show that Telnet-based attacks that target IoT de-
vices have rocketed since 2014. Based on this observa-
tion, we propose an IoT honeypot and sandbox, which
attracts and analyzes Telnet-based attacks against vari-
ous IoT devices running on different CPU architectures
such as ARM, MIPS, and PPC. By analyzing the obser-
vation results of our honeypot and captured malware
samples, we show that there are currently at least 4 dis-
tinct DDoS malware families targeting Telnet-enabled
IoT devices and one of the families has quickly evolved
to target more devices with as many as 9 different CPU
architectures.

1. Introduction
Since years, it is known that many Internet of Things
(IoT) devices are vulnerable to simple intrusion at-
tempts, for example, using weak or even default pass-
words [1]. In 2012, Carna botnet [2] revealed that there
were more than 1.2 million open devices that allowed
logins with empty or default credentials. In January
2014, an Internet-connected fridge was discovered as a
part of a botnet sending over 750,000 spam e-mails [3].
In December 2014, online DDoS services (i.e. booters)
knocked down Sony and Microsoft’s gaming networks,
presumably powered by thousands of compromised IoT
devices such as home routers [4]. From an attacker
point of view, IoT devices are attractive playgrounds,
as–as opposed to PCs–they are 24/7 online, have no
antivirus installed, and weak login passwords give at-
tackers easy access to powerful shells (such as Busy-
Box). Seeing these trends, we believe that IoT devices
are an important new area of security research.

In this paper, we investigate the threat of IoT device
compromises in the masses. We first analyze Telnet-
based scans in darknet, revealing that attacks on Telnet
have rocketed since 2014. Moreover, by grabbing
Telnet banners and web contents of the attackers, we

show that the majority of attacks indeed stem from IoT
devices.

Motivated by this, we propose IoTPOT, a novel honey-
pot to emulate Telnet services of various IoT devices to
analyze ongoing attacks in depth. IoTPOT consists of a
frontend low-interaction responder cooperating with
backend high-interaction virtual environments called
IoTBOX. IoTBOX operates various virtual environ-
ments commonly used by embedded systems for differ-
ent CPU architectures. During 39 days of operation, we
observed 76,605 download attempts of malware bina-
ries from 16,934 visiting IP. We also confirm that none
of these binaries could have been captured by existing
honeypots that handle Telnet protocol such as honeyd
and telnet password honeypot because they are not able
to handle different incoming commands sent by the
attackers.

We manually downloaded 43 distinct malware samples
and found out that they run on 11 different CPU archi-
tectures. Among 43 collected samples, 39 samples were
new to the database of VirusTotal [5] (as of
2015/05/13) showing a gap of capturing utilities for this
type of threat. Out of 4 samples that were in VirusTotal,
2 of them were not detected by any of the 57 A/Vs of
VirusTotal (as of 2015/05/13).

In order to analyze these captured malware binaries, we
propose IoTBOX, the first malware analysis environ-
ment for IoT devices. IoTBOX supports 8 CPU archi-
tectures, spanning MIPS, ARM, and PPC. The sandbox
analysis of 17 samples by IoTBOX revealed that the
samples are used to perform 10 different types of DDoS
attacks and port 23 scans.

Finally, combining the observations results of IoTPOT
with the sandbox analysis by IoTBOX, we confirm that
i) there are at least four distinct malware families
spreading via Telnet, ii) their common behavior is per-
forming DDoS and further propagation over Telnet, iii)
some families evolve quickly, updating frequently and
shipping binaries for a variety of CPU architectures,
even in the limited observation period of 39 days.

The dataset of captured malware, traffic of IoTPOT, list
of compromised IoT device types from our darknet
analysis are available upon request for interested re-
searchers [6]. We are going to make IoTPOT open
source after finishing all documentation processes.

Following is the summary of our contributions:

1) We point out a huge increase of Telnet-based at-
tacks and the involvement of IoT devices.

2) To analyze the scope and variety of the attacks, we
propose a novel honeypot called IoTPOT, which
mimics IoT devices and captures Telnet-based in-
trusions.

3) We further analyze the threats and propose IoT-
BOX, which enables us to run captured malware on
8 different CPU architectures.

4) We reveal that there are at least four DDoS mal-
ware families targeting IoT devices.

The rest of the paper is organized as follows: Sect. 2
explains our preliminary investigations on Telnet-based
attacks. Sect. 3 describes IoTPOT and Sect. 4 IoTBOX.
In Sect. 5, we describe the overview of ongoing attacks
revealed by our analysis. In Sect. 6, related works are
presented. Finally, in Sect. 7 conclusion and future
works are explained.

2. Investigation on Telnet-based Attacks
Until now, there are only anecdotal reports on Telnet-
based compromises. In this section, we investigate how
the situation of Telnet-based compromises has changed.
To this end, we analyze a darknet of NICTER [7] Ja-
pan’s darknet monitoring system that monitors over
270,000 IP addresses presently.
Figure 1 shows the traffic on 23/TCP since 2005, both
in terms of packets and source IP addresses per day
(averaged over all IP addresses in the darknet). The data
shows a recent increase of scans for Telnet. According
to the previous study [8], the large peak in the end of
2012 is caused by the activities of Carna botnet, created
by anonymous hacker for Internet Census by compro-
mising a large number of IoT devices such as routers
[2]. Since 2014, even after the deactivation of Carna
botnet, both the number of packets on 23/TCP and their
senders have rapidly increased and dominated the dark-
net – observing more than 209,497 average scanning
sources per day, which is 52.5% of all sources, in the
darknet in the first week of March 2015.
We used p0f for passive OS fingerprinting [9] and de-
termined that among the scanning 29,844 hosts (sam-
pled from 148 darknet IP, 2015/03/05 to 2015/03/10),

91% of them runs Linux. We also connected back to
these hosts on 23/TCP and 80/TCP, collected Telnet
banners and web contents if any, and manually catego-
rized them by device types. For example, if there is a
telling keyword such as “DVR” in HTTP title, we cate-
gorize this device as DVR (Digital Video Recorder). If
not, we search on Internet using HTTP title as key word
and carefully categorize devices by reading available
manuals. We also group device models of a particular
device type by different HTTP titles. For example,
HTTP titles such as “NetDVrV1” and “NetDvrV3” will
be counted as two device models of DVR device type.
With this way, we found more than 34 different types
of IoT devices including 19 different models of DVR,
16 models of IP Camera, 45 models of wireless routers.
Moreover, devices such as metrological satellite, heat
pumps, solid state recorders and TV have scanned our
darknet on 23/TCP.
Table 1 shows top ten attacking hosts and device mod-
els of inferred device types. Summarizing, these results
show that various IoT devices are already involved in
the ongoing attacks.

Table 1 - Scanning hosts and device models

Device Type Host
Count

Device Model
Count

DVR 1,509 19
IP Camera 523 16
Wireless Router 118 45
Customer Premises Equipment 65 1
Industrial Video Server 22 1
TV Receiver 19 2
Heat Pump 10 1
EMU System 9 1
Digital Video Scalar 5 2
Router 4 3

Figure 1 - Packets and hosts on 23/TCP per day per darknet IP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

50

100

150

200

250

Ho
st
	
 C
ou

nt
s	
 P

er
	
 IP

	
 o
f	
 D

ar
kn

et

Pa
ck
et
	
 C
ou

nt
s	
 P

er
	
 	
 I
P	

of
	
 D
ar
kn

et
	
 	
 	

	

Time

#	
 of	
 Packets

#	
 of	
 Unique	
 Hosts

3. IoT Honeypot (IoTPOT)
Our preliminary investigation on Telnet-based attacks
implies that there are number of IoT devices being
compromised and misused to search and attack other
IoT devices. In order to study these attacks in depth, we
propose IoTPOT, a novel honeypot that emulates inter-
actions of Telnet protocol and a variety of IoT devices.

3.1 Telnet Protocol

Before explaining IoTPOT, we briefly revisit the Telnet
protocol [10]. Figure 2 illustrates the interactions be-
tween client and server on Telnet. After the TCP 3-way
handshake, client and server can exchange Telnet op-
tions. Either Telnet server or client can initiate a request
such as “Do Echo”, a request for echo back and “Do
NAWs” a request to Negotiate About Window size
(NAWs). After exchanging options, the server sends a
welcome message to the client, immediately followed
by login prompt. For example, “BCM96318 Broadband
Router” as welcome message and “Login:” as login
prompt. In this paper, we call the above initial part of
interactions banner interactions. Then, the client sends
a pair of username/password to log in to the server. We
call this part authentication. Finally, if the credentials
are valid, the client logs in and instructs the server us-
ing various shell commands. We call this part com-
mand interactions.

3.2 IoTPOT Design

The Telnet protocol already highlights a few challenges
for our honeypot design. First, we need to support op-
tions that the attacking clients choose to use. Second,
we aim to provide realistic welcome message and login
prompt, to deal with situations where an attacker spe-
cializes in compromising certain devices only. Third,
we want to allow for logins, while we also want to ob-
serve characteristics in the authentication interactions
(e.g., sequences of usernames/passwords). Finally, in-

dependent from the Telnet protocol, our honeypot
should support multiple CPU architectures to capture
malware across devices. Our honeypot is designed to
support these features.

In order to emulate different devices, we collected these
banners from the Internet by performing Telnet scans
with masscan tool [11] . From all collected banners, we
prioritized banners of hosts that have accessed our
honeypot. Considering a self-spreading nature of these
attacks, these attacking hosts can also be considered as
already compromised victims, which should be emulat-
ed by our honeypot.

In the next step, during authentication, IoTPOT sup-
ports various tactics. For example, it can be configured
to reject any authentication credentials to observe login
attempts, to allow immediate authentication regardless
of the login, to accept only certain credentials, or reject
the first attempts and eventually accept a login. Finally,
IoTPOT chooses from a set of environments during the
command interactions. As each IoT device runs on dif-
ferent CPU architecture, we prepare a set of embedded
linux OS on different CPU architectures to handle the
interactions of various devices.

3.3 IoTPOT Implementation

Figure 3 is the overview of IoTPOT. The heart of IoT-
POT is Frontend Responder, which acts as different
IoT devices by handling incoming TCP connection re-
quests, banner interactions, authentication, and com-
mand interactions with a set of device profiles.

A device profile consists of a banner profile, an authen-
tication profile, and a command interaction profile.
Banner profiles determine the responses of the honey-
pot for banner interactions, namely Telnet options, wel-
come message, and login prompt. Authentication pro-
files determine how to respond to incoming authentica-
tion challenges. Command interaction profile
determines the responses to incoming commands, con-
sisting of a set of commands and their corresponding
responses.

When an incoming command is not known yet,
Frontend Responder establishes a Telnet connection
with a backend IoTBOX and forwards the command to
it. IoTBOX is a set of sandbox environments that run
Linux OS for embedded devices with different CPU
architectures. The detailed explanation of IoTBOX is in
Section 4. Frontend Responder forwards a response
from IoTBOX to the client. Note that the incoming
commands forwarded to IoTBOX may cause malware

Figure 2 - Telnet Protocol

3-­‐way	
 handshake

Telnet	
 options

Welcome	
 Message
&	
 Login	
 Prompt

username	
 /pass

command

response

.........

Banners

Authentication

Command
Interactions

Telnet	
 Client Telnet	
 Server

infections or system alteration. Therefore, we reset the
OS image occasionally.

The Profiler parses the interaction between Frontend
Responder and IoTBOX, extracts the incoming com-
mand and corresponding response, and updates the
command interaction profile so that Frontend Respond-
er can further handle the same command without inter-
acting with IoTBOX. Another important function of
Profiler is the collection of banners from devices in the
Internet. The Profiler operates in two banner grabbing
modes: active scan mode and visitor scan mode. In ac-
tive scan mode, Profiler scans different networks to
collect banners from various devices. In visitor scan
mode, it only connects back to hosts who visit our
honeypot.

The Downloader component examines the interactions
for download triggers of remote files, such as malware
binaries. In particular, we download from all URLs we
observed via commands such as wget, ftp, and tftp.

Finally, the Manager handles configuration of IoTPOT.
Namely, it links IP addresses to specific Device Profiles.

3.4 Observation Results

IoTPOT setup: We operated IoTPOT in two different
periods: Trial operation period and stable operation
period. In the trial operation period from 2014/11/07 to
2015/03/31, we had tried different configurations, de-
vice profiles, and assignment of IP addresses in ad-hoc
manner trying to understand the attackers’ behavior and
discussing the proper setting of the honeypots. In the
stable operation period from 2015/04/01 to 2015/05/09,
we deployed IoTPOT on 165 IP addresses, used 29
banner profiles assigning each to three IP addresses.
We set authentication profiles to accept any challenges

and prepared a single command interaction profile,
manually created from one of the most widely exploited
DVR brands [12]. The backend IoTBOX contained an
environment that runs Linux for embedded devices on 8
different CPU architecture created by OpenWRT.
Downloader was not fully implemented so we manually
downloaded and collected malware binaries.

Summary of Observations: During 39 days of the
stable operation, 70,230 hosts visited IoTPOT. Among
them, 49,141 successfully logged in and 16,934 at-
tempted to download external malware binary files. We
observed 76,605 download attempts in total. We manu-
ally downloaded 43 malware binaries of 11 CPU archi-
tectures. Among 43 collected samples, 39 samples were
new to the database of VirusTotal [5] (as of
2015/05/13). Out of 4 samples that were in VirusTotal,
2 of them were not detected by any of the 57 A/Vs of
VirusTotal (as of 2015/05/13).

General Flow of Telnet Attacks: We observed three
typical steps of compromise: 1) The first stage of attack
is intrusion, in which attackers attempt to login to our
honeypot. 2) The second stage is infection, in which
attackers send a series of commands over Telnet to
check and customize the environment and download
and execute the external binaries. 3) The third stage is
monetization, in which executed binaries are con-
trolled by the attackers through C&C to conduct the
intended malicious activities, such as DDoS attacks and
spreading. The following subsections highlight some
points noticed for each attack stage.

3.4.1 Stage 1: Intrusion

We recognize two major intrusion behaviors: login at-
tempts with a fixed or a random order of credentials.
Table 2 shows the major four login patterns observed
by IoTPOT. For the fixed login sequences, we can rea-
sonably infer that these challenges are from malware
sharing the same implementation of dictionary attacks.

Figure 3 - Overview of IoTPOT
Table 2 - Major log in patterns observed by IoTPOT.

Pattern
Name Challenge Order Username/Pass Number of Observed Attacks Per Day

(Average)

Fixed Order
1 Fixed Order

root/root
root/admin
root/1234

root/12345
root/123456

root/1111
root/password
root/dreambox

root/vizxv
root/system

admin/admin

174

Random Order
1 Random Order

root/root
root/admin
root/12345
root/123456
admin/root

admin/admin
support/support

…

606

Fixed Order
2

Fixed Order

admin/admin
admin/362729
admin/m4f6h3

admin/n3wporra
admin/263297
admin/fdpm0r

admin/1234
root/1234

…

3.2

Random Order
2 Random Order

root/xc3511
root/123456
root/12345
root/root

…

3.5

3.4.2 Stage 2: Infection

After successfully logged in to honeypot, attackers
check and customize the environment to prepare down-
load of malware binary by sending series of commands
over Telnet. Table 3 summarizes the 6 major patterns of
command sequences observed by IoTPOT. Note that
some of the patterns were observed only in the trial
operation period for parameter tuning and we do not
have credible counts of these patterns. We believe most
infection activities are automated as exactly the same
pattern of commands are repeatedly observed and also
the intervals between the commands are very short.

We name each pattern by characteristic string it con-
tains. For example, the patterns named ZORRO 1,
ZORRO 2 and ZORRO 3 all have common string
“ZORRO” in their command sequences. Moreover, we
can see attacker’s common intension among them.
Namely, all three patterns of ZORRO try to remove
many existing commands and files under /usr/bin, /bin/,
etc, and prepare customized command for downloading
external malware binary file. With this setup, other in-
truders would have difficulty to abuse the system. Simi-
lar intension of attackers can be seen in case of pattern
named Bashlite. Although it does not alter the com-
mands, instead it activates iptables to drop incoming
telnet connection requests. Bashlite also has function-
ality to kill other existing malicious processes. All these
activities explained above come in a form of commands
over Telnet except that Bashlite downloads and exe-
cutes shell script file to do it. Although there are diver-
sities in attackers’ behavior at the infection stage, they
all have a common goal of downloading and executing
malware binary file. One more common behaviors we
found is checking whether shell is usable properly or
not by echoing a particular string in all families. If the
appropriate reply for the echo command is not received,
attacker stops the attacks.

Comparison with honeyd: We confirmed that honeyd
[13] cannot handle these commands in Table 3 and
therefore cannot capture malware binaries observed by
IoTPOT. Namely, honeyd failed to respond to very first
few commands such as “cat /bin/sh” in case of ZORRO
family and appropriate reply for the first echo command
of Bashlite, nttpd and KOS family and so the attacker
stopped sending any further commands.

3.4.3 Stage 3: Monetization

Finally, the attacker tries to monetize the compromised
devices. We thus analyzed the 43 malware binaries col-
lected by IoTPOT. We show the list of samples in Ap-
pendix. The sandbox analysis results of some of the

binaries are described in Section 4. As none of the col-
lected samples are obfuscated, we classified the binaries
based on the hardcoded strings, such as strings for C&C
commands. Table 4 summarizes results of manual clus-
tering of the collected samples based on the characteris-
tic strings in the binaries.

Table 3 - Patterns of command sequences observed by IoTPOT

The column with # in Table 3 indicates that the patterns are observed only in
trial period and no credible counts of the patterns can be provided. Steps 1 - 4
of ZORRO 1, ZORRO 2, and ZORRO 3 are done by a group of reconnaissance
hosts and Steps 5 - 9 are done by a single intrusion host repeatedly. See Section
3.4.4 for details.

Table 4 - Clustering results of collected samples by

characteristic strings in the binaries
Family	
 Name Keywords

Bin	
 42
sh	
 -­‐c	
 "cd	
 /tmp	
 ;	
 rm	
 -­‐f	
 .nttpd	
 ;	
 wget	
 -­‐O	
 .nttpd	

http://%d.%d.%d.%d:%d	
 ;	
 chmod	
 +x	
 .nttpd	
 ;	

./.nttpd"

bin.sh
bin2.sh
bin3.sh
echo	
 -­‐e	
 '\x67\x61\x79\x66\x67\x74‘

Bin	
 10	
 to	
 Bin	
 41

YESHELLO
killattk

0916.davinci
0923.davinci
0923.8196

Bin	
 1-­‐	
 Bin9

Bin	
 43

Pattern Name Pattern of Command Sequence

Set of
Command
Sequence
per Day

(Average)

ZORRO 1

1. Check type of victim shell with command “sh”
2. Check error reply of victim by running non-existing command such

as ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing

ZORRO.

#5. Remove various command and files under /usr/bin/, /bin, var/run/,
/dev.

6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make

attacker’s own shell
8. Using attacker’s own shell, download binary . IP Address and port

number of malware download server can be seen in the command.
9. Run binary

ZORRO 2

1. Check type of victim shell with command “sh”
2. Check error reply of victim by running non-existing command such

as ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing

ZORRO.

#
5. Remove various command and files under /usr/bin, /bin, var/run,

/dev.
6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make

attacker’s own shell
8. Using attacker’s own shell, download binary . IP Address and port

number of malware download server cannot be seen in the
command because it is hard coded in the attacker’s own shell.

9. Run binary

ZORRO 3

1. Check type of victim shell with command “sh”
2. Check error reply of victim by running non-existing command such

as ZORRO.
3. Check whether wget command is usable or not.
4. Check whether busybox shell can be used or not by echoing ZORRO.

174

5. Remove all under /var/run, /dev, /tmp, /var/tmp
6. Copy /bin/sh to random file name
7. Append series of binaries to random file name of step 6 and make

attacker’s own shell
8. Using attacker’s own shell, download binary. IP Address of malware

download server can be seen in the command and port number
cannot be seen in the command

9. Run binary

1,353

Bashlite

1. Check whether shell can be used or not by echoing “gayfgt”
2. Download shell script.
3. Using downloaded shell script, kill previously running malicious

process, download malware binaries of different CPU architectures
and block 23/TCP in order to prevent other infection.

4. Run all downloaded malware binaries.

606

nttpd
1. Check whether shell can be used or not by echoing “welcome”
2. Download binary to /tmp directory.
3. Run Binary.

3.2

KOS

1. Check whether shell can be used or not by echoing
“ $?K_O_S_T_Y_P_E”

2. List /proc/self/exe
3. Check all running process
4. Download malware binary using tftp to /mnt folder
5. Run Malware
6. Check CPU information

3.5

3.4.4 Coordinated intrusions

In the trial period, we noticed a coordinated intrusion
by ZORRO family, in which reconnaissance and the
actual malware infection were done by different hosts
in coordination. Namely, we observed a reconnaissance
host attempting logins to our honeypot which had been
configured to accept only a single pair of username/
password. Eventually, this reconnaissance host success-
fully logged in by guessing a valid login, and sent sev-
eral commands over Telnet for information gathering of
the compromised host, including the architecture of
CPU it ran. However, it disconnected the session with-
out downloading nor executing any malware binary file.
After a while, we observed another host who visited our
honeypot and successfully logged in with just one chal-
lenge implying that it already knew the valid credential
from the earlier reconnaissance. This intrusion host then
sent series of commands to download and execute ex-
ternal malware binary. The downloaded binary file was
indeed of the CPU architecture of the honeypot and so
we think that this host knew the CPU architecture of the
honeypot from the reconnaissance.

We then set a new login credential and kept observa-
tion. We had a visit of another reconnaissance host and
it succeeded to log in and identify the new credential.
After a while, the same intrusion host from the previous
intrusion visited us again with the newly obtained cre-
dential and infected the malware. After all, we observed
a group of over 100 reconnaissance hosts and only a
single intrusion host in coordination. Figure 4 depicts
the coordinated attack.

4. IoT Sandbox (IoTBOX)
IoTPOT has shown that there is a clear rise of Telnet-
spreading malware that has already compromised thou-

sands of IoT devices. In this section, we present our
multi-architecture sandbox called IoTBOX.

4.1 IoTBOX Design

IoTBOX supports analysis of malware on 8 different
CPU architectures, namely as MIPS, MIPSEL, PPC,
SPARC, ARM, MIPS64, sh4 and X86. The design of
IoTBOX is shown in Figure 5. To run malware binaries
of different CPU architectures, we need a cross compi-
lation environments. We thus chose to run respective
platforms (OS) on an emulated CPU using QEMU, an
open source processor emulator. Then, we use the re-
spective OpenWRT platform to run on the emulated
CPU environment. OpenWRT is a highly extensible
GNU/Linux distribution for embedded devices (typical-
ly wireless routers) [14]. To install OpenWRT, we use
OpenWRT Builtroot, which is a build system for the
distribution and it works on Linux, BSD or MacOSX.
Next to OpenWRT, IoTBOX also supports Debian
Linux.

Finally, the Access Controller controls all network re-
lated operations such as NAT and outbound traffic such
as C&C communication, DNS resolution and attack
traffic such as DoS. We block all outgoing DoS traffic
from malware except allowing some DNS and HTTP
traffic of maximum 5 packets per minutes. 23/TCP
scans are redirected to Dummy Server, which is indeed
IoTPOT. With this way, we can monitor how propaga-
tion over Telnet is done.

 Analysis Report outputs the results of pcap analysis
results for every 24 hours showing total number of
packets, start time and end time of packet captures, data
byte/bite rate, average packet size and rate and total
number of victim IP address for each attack. In addi-
tion, summary of commands strings from C&C are
summarized if any.

Figure 4 - Coordinated attack of ZORRO family observed by IoTPOT

IoT botnet

① Scan	
 and	
 login	
 attempt

C&C③Login	
 with	
 confirmed
username/pass	
 and	
 infect	

Malware

⑤Attack	
 command	

⑥ DoS,	
 etc

②Login	
 successfully
and	
 check	
 environment
(CPU	
 architecture,	
 etc)

Reconnaissance	
 group

Intrusion	
 host
mips
mipsel
arm
ppc

superh
i586
i686
sparc

Malware	
 Download	
 Server

④Download	
 only	

appropriate	
 malware
binary

ip,	
 id/pass
archi,	
 etc

IoTPOT

Victim

Figure 5 - Overview of IoTBOX

4.2 Analysis Results

Using IoTBOX, we analyzed 17 malware binaries of 8
CPU architectures. We observed 8 of them performed
10 different types of DoS attacks and 2 performed
23/TCP scans. Please refer to Appendix for the infor-
mation of analyzed malware samples. A summary of
the observed attacks is illustrated in Figure 7. Most
attacks we observed were UDP floods and many differ-
ent types of TCP floods. We also observed UDP floods
against multiple destination ports, which seemed to aim
at flooding target network. Interestingly, we also ob-
served DNS water torture attack [15], SSL attacks [16]
and other two unknown DNS based attacks in which a
large number of queries to unknown type of DNS re-
source records (RR) were sent to an authoritative name
server of a popular ISP. Sample Bin 43 exhibits unique
functionality of a fake web hosting. Namely, it starts
hosting a web page that looks like a top page of a popu-
lar Chinese search engine “baidu.com”. In order to
avoid any misuse of the fake web page in real attack,
we carefully monitor if any incoming connections ap-
pear although nothing has been seen yet. One more

point we notice is that Bin 13, 19, and 22 of Figure 7
have a backdoor port 5000/UDP open for further re-
mote control of the compromised host because the ini-
tial intrusion route, the Telnet, would already have been
blocked by iptables [17] during the infection phase to
prevent other attackers from compromising the host.

Figure 7 - Observed attacks by IoTBOX

Figure 6 - Overview of Observed Attacks by IoTPOT and IoTBOX

Fixed	

Order	
 1

Random	

Order	
 1

Fixed	

Order	
 2

Random	

Order	
 2

ZORRO	
 1

ZORRO	
 2

ZORRO	
 3

Bashlite

nttpd

KOS

Bin	
 1

Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin
2-­‐9

Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin
10-­‐16

Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin
17-­‐24	

Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	

25-­‐32

Bin	

42

Bin	

43

Fake	
 Web	

Hosting

DoS

Telnet	

Scan

Intrusion	

(id/pass	
 challenge	

patterns	

in	
 Table	
 2)

Infection	

(command	

sequences	
 patterns	

in	
 Table	
 3)

Downloaded	

Binaries (grouped	

by	
 characteristic	

strings	
 in	
 Table	
 4	
)

Monetization
(behaviors	
 in	

sandbox	
 in	
 Fig.	
 7)

2015/01	
 to	
 2015/04
2015/02

2014/11	
 to	
 2015/05

2015/04

2015/04

2014/11

2015/04

2015/04

2015/04

2015/02

2015/04

2014/11	
 to	
 2015/05

2015/04

2015/04

2015/01

2015/04

ZORRO	

Family

Bashlite
Family

nttpd Family

KOS	
 Family

ARM

8 Architectures

7 Architectures

8	
 Architectures

9 Architectures

MIPS

MIPS

Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	
 1Bin	

33-­‐41

8	
 Architectures

2015/05

2015/01

Bin
1

Bin
19

Bin
23

Bin
22

Bin
2

Bin
5

Bin
9

Bin
42

DNS	
 Water	
 Torture

SSL	
 Attack

DilDoS

UDP	
 Flood

SYN	
 Flood

ACK	
 Flood

Null	
 Flood

Telnet	
 Scan

Syn-­‐Ack Flood

Unknown	
 DNS	
 	

Attack	
 1	

Unknown	
 DNS	
 	

Attack	
 2	

Jan-­‐11

Jan-­‐12

Jan-­‐13

Jan-­‐14

Jan-­‐17

Jan-­‐18

Jan-­‐30

Jan-­‐31

Feb-­‐01

Feb-­‐02

Feb-­‐03

Feb-­‐04

Feb-­‐05

Feb-­‐06

Feb-­‐07

Feb-­‐08

Feb-­‐09

April-­‐28

April-­‐29

April-­‐30

May-­‐1

May-­‐2

May-­‐3

May-­‐4

May-­‐5

May-­‐6

Binary	
 ID Attack	
 Type
Date	
 of	
 Attack

Bin
43

Fake	
 Web	
 Hosting

5. Overview of Observed Attacks
Figure 6 depicts the overview of Telnet-based attacks
observed by IoTPOT and IoTBOX. Following are our
findings.

1) We have observed four malware families whose
intrusion, infection, and malware binaries are in-
dependent from each other.

2) From viewpoint of monetization, the different
families share the same goal of performing DoS
attacks and Telnet scans. The only exception is
Bin 43 that starts to host a fake search engine.

3) Some families seem to spread more aggressively
than others. Namely, as in Figure 6, ZORRO fami-
ly has updated its command sequences twice dur-
ing observation period. Also, the Bashlite family
has increased the diversity of binaries to support
more CPU architectures.

6. Related Works
We implemented the first honeypot tailored for IoT
devices, IoTPOT, and to the best of our knowledge,
there is still no honeypot like IoTPOT that mimics IoT
devices of many different CPU architectures while lis-
tening on 23/TCP with the ability to learn unknown
command interactions. Although Honeyd [13] listens
on 23/TCP, it is a low-interaction honeypot and cannot
handle not only Telnet options but also command inter-
actions interactively, as explained in Sect. 3.4.2. Alt-
hough there is another honeypot known as Telnet pass-
word honeypot [18], its main focus is collecting Telnet
password and command interactions are not supported.
Other popular low interaction honeypots such as Dio-
naea [19] and Nepenthes [20] do not support Telnet.

We also implemented IoTBOX, the first sandbox that
handle to run malware of different CPU architectures.
Out of more than 15 surveyed sandbox systems in [21],
none supports different CPU architecture such as MIPS,
ARM.

7. Conclusion and Future Works
We have shown that IoT devices are susceptible to
compromises and increasingly are also target for mal-
ware on the masses. We identified four malware fami-
lies, which show worm-like spreading behavior, all of
which are actively used in DDoS attacks.

As future work, we plan to extend IoTPOT to support
more protocols that are likely the target by attacks, such
as SSH. Furthermore, we aim to extend the sandbox

with capabilities to stimulate even more architectures
and environments that are common on IoT devices.

Acknowledgement

 A part of this was conducted under the auspices of the
MEXT Program for Promoting Reform of National
Universities and supported by PRACTICE (Proactive
Response Against Cyber-attacks Through International
Collaborative Exchange) project by the Ministry of
Internal Affairs and Communications, Japan.

References:
[1] A. Cui and S. Salvatore J., “A quantitative analysis of

the insecurity of embedded network devices: results of
a wide-area scan.” [Online]. Available:
http://ids.cs.columbia.edu/sites/default/files/paper-
acsac.pdf. [Accessed: 24-May-2015].

[2] “Internet Census 2012.” [Online]. Available:
http://internetcensus2012.bitbucket.org/paper.html.
[Accessed: 24-May-2015].

[3] “DailyTech - Hackers Use Refrigerator, Other Devices
to Send 750,000 Spam Emails.” [Online]. Available:
http://www.dailytech.com/Hackers+Use+Refrigerator+
Oter+Devices+to+Send+750000+Spam+Emails+/articl
e34161.htm. [Accessed: 24-May-2015].

[4] “Lizard Stresser Runs on Hacked Home Routers —
Krebs on Security.” [Online]. Available:
http://krebsonsecurity.com/2015/01/lizard-stresser-
runs-on-hacked-home-routers/. [Accessed: 24-May-
2015].

[5] “VirusTotal - Free Online Virus, Malware and URL
Scanner.” [Online]. Available:
https://www.virustotal.com/. [Accessed: 24-May-
2015].

[6] “IoT Security - Research Center for Information and
Physical Security” [Online]. Available:
http://ipsr.ynu.ac.jp/iot/index.html. [Accessed: 24-
May-2015].

[7] M. Eto, D. Inoue, J. Song, J. Nakazato, K. Ohtaka, and
K. Nakao, “nicter: a large-scale network incident anal-
ysis system: case studies for understanding threat land-
scape,” BADGERS 11 Proc. First Workshop Build.
Anal. Datasets Gather. Exp. Returns Secure.

[8] E. L. Malécot, and D. Inoue, “The Carna Botnet
Through the Lens of a Network Telescope,” Proc. 6th
Int. Symp. Found. Pract. Secur. FPS 2003 Oct. 2013,
Oct. 2013.

[9] “p0f v3.” [Online]. Available:
http://lcamtuf.coredump.cx/p0f3/. [Accessed: 24-May-
2015].

[10] “RFC 854 - Telnet Protocol Specification.” [Online].
Available: https://tools.ietf.org/html/rfc854. [Accessed:
24-May-2015].

[11] “robertdavidgraham/masscan · GitHub.” [Online].
Available:
https://github.com/robertdavidgraham/masscan. [Ac-
cessed: 24-May-2015].

[12] “Remote Code Execution in Popular Hikvision Sur-
veillance DVR | Threatpost | The first stop for security
news.” [Online]. Available:
https://threatpost.com/remote-code-execution-in-
popular-hikvision-surveillance-dvr/109552. [Accessed:
24-May-2015].

[13] “Developments of the Honeyd Virtual Honeypot.”
[Online]. Available: http://www.honeyd.org/. [Ac-
cessed: 24-May-2015].

[14] “OpenWrt.” [Online]. Available: https://openwrt.org/.
[Accessed: 24-May-2015].

[15] Secure64, “Water Torture: A Slow Drip DNS DDoS
Attack «Cybersecurity «Cyber Trust Matters.” .

[16] “DDoS Attacks on SSL: Something Old, Something
New.” [Online]. Available:

http://asert.arbornetworks.com/ddos-attacks-on-ssl-
something-old-something-new/. [Accessed: 24-May-
2015].

[17] “netfilter/iptables project homepage - The netfilter.org
project.” [Online]. Available: http://www.netfilter.org/.
[Accessed: 24-May-2015].

[18] “zx2c4/telnet-password-honeypot · GitHub.” [Online].
Available: https://github.com/zx2c4/telnet-password-
honeypot. [Accessed: 24-May-2015].

[19] “dionaea — catches bugs.” [Online]. Available:
http://dionaea.carnivore.it/. [Accessed: 24-May-2015].

[20] “Nepenthes - finest collection -” [Online]. Available:
http://nepenthes.carnivore.it/. [Accessed: 24-May-
2015].

[21] “malware.dvi - malware_survey.pdf"

Appendix

Note that all samples in the table and corresponding honeypot traffic are available for interested researchers upon
request [6].

Malware binary files captured by IoTPOT

Familly	
 name Sample	
 ID File	
 Name Hash(md5) Architecuture Date	
 of	
 Capture Existance	
 in	
 VirusTotal Detection	
 Ratio	
 in	
 VirusTotal
Bin	
 1 wb.arm e94f48285ec44e739505889c922def55 ARM 2015/01 yes 0	
 /	
 56
Bin	
 2 telnet.arm 4101d096094fa7f3b35a14cee8c5d6bb ARM 2015/04 no
Bin	
 3 telnet.m68k 2d4c6238ad43bfcc4668467ef6846196 M68K 2015/04 no
Bin	
 4 telnet.mp 5c091a1c1311aa37443027a315b663f5 MIPS 2015/04 no
Bin	
 5 telnet.mps acb79b0810aeb8e1db298cd678b33840 MIPSEL 2015/04 no
Bin	
 6 telnet.ppc 8e654a673d4bdd8ac16c39f7a4654e1b Power	
 PC 2015/04 no
Bin	
 7 telnet.sh4 60ee95389061b1c8ce0cf8b6f748c8a6 SH4 2015/04 no
Bin	
 8 telnet.sparc 9918dba3e5737d25424b05b9f10b16c0 SPARC 2015/04 no
Bin	
 9 telnet.x86 792d38b6fdd89d65d35d1b01cd1c2ba7 x86 2015/04 no
Bin	
 10 arm f73da5e1e33762f09d74e2d3d16c5c50 ARM 2014/11 yes 7	
 /	
 57
Bin	
 11 i586 66113dc9a53866702ec0ca68a9a546b8 i586 2014/11 no
Bin	
 12 i686 6d9f7123e8692087bdb2822e44854eef x86 2014/11 no
Bin	
 13 mips c58e25360794355fc77c18b1688d4d01 MIPS 2014/11 yes 6	
 /	
 57
Bin	
 14 mipsel a265bab2443e0635a4adfe7f47e06974 MIPSEL 2014/11 no
Bin	
 15 sparc 738db9f6b9debd08976eaa91bbf16117 SPARC 2014/11 no
Bin	
 16 superh a12e7f584177fb5d229707c5c7f7fa72 Super H 2014/11 no
Bin	
 17 arm 06b2fbee4e7ae5c1370753543b7d2e21 ARM 2015/04 no
Bin	
 18 i586 b7b299fdffbbaabd184ab4d8e69a4d98 x86 2015/04 no
Bin	
 19 i686 4061432ae8b37171af033d5185b31659 x86 2015/04 no
Bin	
 20 mips 3fc4bdb902e086e3e5681798036207e7 MIPS 2015/04 no
Bin	
 21 mips64 feb53f2aec98e96c1321a6811ac05a18 MIPS64 2015/04 no
Bin	
 22 mipsel 94b2e00fc4c11abd77fb76fd5815d1dc MIPSEL 2015/04 no
Bin	
 23 ppc 06940d099751304c704f7a31c2459fb8 Power	
 PC 2015/04 no
Bin	
 24 sparc d76cf4f0f37395906df4d2c0defcd923 Super H 2015/04 no
Bin	
 25 arm 1549aed9b818b6a994dc5fb6c4a57fa2 ARM 2015/04 no
Bin	
 26 i586 daab490a0a0a0a2b2528b18dacbf66ed x86 2015/04 no
Bin	
 27 i686 8a2b06d4ba8b88cab092801fbcbfd8b4 x86 2015/04 no
Bin	
 28 mips 61f32f7a0d4b7643fb03da75cf5a1329 MIPS 2015/04 no
Bin	
 29 mips64 ee7d764767c25d4c54be44f18a5aa47d MIPS64 2015/04 no
Bin	
 30 mipsel 490968447a603c3664186164c99c14be MIPSEL 2015/04 no
Bin	
 31 ppc 2695e6d6930fc3e5b3345f8cd811d693 Power	
 PC 2015/04 no
Bin	
 32 sparc 132c5605752c9cfcc3f746b8451c7fe6 Super H 2015/04 no
Bin	
 33 arm 032ec8869e235bfa8a8dfe7b125a02b6 ARM 2015/05 no
Bin	
 34 i586 86f9fc4e914d358d05bd5d1d93a0d673 x86 2015/05 no
Bin	
 35 i686 c1ef1dd4232e14c45661e0a8a976867e x86 2015/05 no
Bin	
 36 mips a41867fbf8e2358ba5551509907b288c MIPS 2015/05 no
Bin	
 37 mips32 77b73b0fe4a79dfc284fce55bf3cbe8b MIPS32 2015/05 no
Bin	
 38 mips64 d31261199d16b7ad82e0f87094de6e07 MIPS64 2015/05 no
Bin	
 39 mipsel c652fe5e53cba8c450ee6f7307408c8c MIPSEL 2015/05 no
Bin	
 40 ppc 52f9bd74d63888182fbab15443b70898 Power	
 PC 2015/05 no
Bin	
 41 sparc be35cd9d4c6047e940e6c58a96fbf0b8 SPARC 2015/05 no

nttpd Bin	
 42 nttpd bbf1327c1a5213b41a4d22c4b4806f7c MIPSEL 2015/05 yes 0	
 /	
 57
KOS Bin	
 43 1225.8196 ec381bb5fb83b160fb1eb493817081c1 MIPS 2015/05 no

Bashlite

ZORRO

