
– vatiCAN –
Vetted, Authenticated CAN Bus

Stefan Nürnberger, Christian Rossow

CISPA, Saarland University, Germany

Abstract. In recent years, several attacks have impressively demon-
strated that the software running on embedded controllers in cars can
be successfully exploited – often even remotely. The fact that compo-
nents that were hitherto purely mechanical, such as connections to the
brakes, throttle, and steering wheel, have been computerized makes digi-
tal exploits life-threatening. Because of the interconnectedness of sensors,
controllers and actuators, any compromised controller can impersonate
any other controller by mimicking its control messages, thus effectively
depriving the driver of his control.

The fact that carmakers develop vehicles in evolutionary steps rather
than as revolution, has led us to propose a backward-compatible authen-
tication mechanism for the widely used CAN vehicle communication
bus. vatiCAN allows recipients of a message to verify its authenticity via
HMACs, while not changing CAN messages for legacy, non-critical com-
ponents. In addition, vatiCAN detects and prevents attempts to spoof
identifiers of critical components. We implemented a vatiCAN prototype
and show that it incurs a CAN message latency of less than 4 ms, while
giving strong guarantees against non-authentic messages.

1 Introduction

In the highly competitive field of automobile manufacturing, only those have
survived who have adopted the art of extreme cost savings by establishing a well-
coordinated concert of manufacturers, suppliers and assemblers. It is this fragile
chain, which now turns out to be too static when it comes to cross-sectional
changes as would be needed by a radically new, secure architecture.

Even though security experts agree that an overhauled, security-focused archi-
tecture is much-needed [2, 10, 16, 17], carmakers simply cannot easily change
established designs. Arguably, two major obstacles are (1) the industry-wide
“never touch a running system” attitude, which originates in legislative burdens
and safety concerns, and (2) the overwhelming complexity of regulations in dif-
ferent jurisdictions of the world, which have fostered the outsourcing to highly
specialized suppliers. This effect is even more amplified due to the tendency of
acquisition rather than in-house innovation. As a result, desired functionalities
are put out to tender and the hardware and software is instead developed by a

long chain of suppliers. For example, Porsche claims to have the lowest manu-
facturing depth in the automotive industry with more than 80% of production
cost spent for supplier’s parts, while the remaining 20% are spent on engine
production, the assembly, quality control and sale of their vehicles [3].

This is in contrast with the needed extensive architectural changes to implement
at least some level of security. The lack of automotive security engineering princi-
ples as opposed to the desktop computer world is not surprising. The most widely
used automotive communication protocol CAN 1 was designed to run in isolation
stowed away behind panels. Faulty hardware or damaged wires were the only
likely threat to such an isolated system. A deliberate manipulation could only
happen with physical access to the inside of the car. While these design principles
were absolutely adequate for safety requirements back then, modern cars have
meanwhile reached an almost incomprehensive complexity and moreover violate
the ancient isolation assumptions due to their promiscuous connectivity such as
Bluetooth audio, 3G Internet, WiFi, wireless sensors, RDS2, and TMC3.

It is not only potentially possible but it has been practically shown that vul-
nerabilities in these wireless connections exist [2]. An attacker can then write
arbitrary messages on the CAN bus, which connects the car’s computers, the so-
called Electronic Control Units (ECUs). While the culprit is indeed a vulnerable
ECU that can be compromised, the exploited fact is that the CAN topology is
a bus. This broadcast topology allows any connected device, including a com-
promised ECU, to send arbitrary control messages. The receivers have no way
of verifying the authenticity of the sender or the control data.

Contributions. In this paper, we propose vatiCAN, a framework for embedded
controllers connected to the CAN bus, which allows both senders and receivers to
authenticate exchanged data. First and most importantly, receivers can check the
authenticity of a received message. Second, senders can monitor the bus for their
own messages to detect fraudulent messages. In detail, vatiCAN provides

– Sender and message authentication in the CAN bus broadcast topology,
which prevents fake messages from illegitimate senders from being processed.

– Security against replay-attacks by incorporating a global nonce.

– Spoof detection of own messages in software by bus monitoring.

– Full backward compatibility as message payloads, sender IDs and most
importantly CAN transceiver chips are left unmodified, which allows legacy
devices to work without modifications.

– Spoof prevention of own messages is possible in hardware by changing bus
arbitration.

1 Controller Area Network - Developed by BOSCH and Mercedes-Benz in 1983
2 Radio Data System - digital payload for FM radio broadcast, e.g. station name
3 Traffic Message Channel - Traffic information over FM radio for navigation systems

2

While the possible improvements on a legacy architecture are somewhat limited
by the intended backward compatibility, this paper shows what can be achieved
when backward compatibility is the utmost goal. It thereby lays the founda-
tion for automakers to increase the status quo of security while adhering to the
established structures of minimal change.

2 Background

To address the need to connect different sensors, actuators and their controllers
with each other so that they can make informed decisions, BOSCH developed a
new communication bus in 1983 [7, 13]. For example, the widespread traction
control system (TCS4) could use CAN to connect the necessary sensors (wheel
rotation) and actuators (brakes). The TCS monitors the wheel spin on each of
the four wheels and intentionally brakes individual wheels to get traction back
(see Figure 1).

TCS
Brake 3

Brake 4Brake 2

Brake 1
RPM 1

RPM 2

RPM 3

RPM 4
CAN

(a) Topological Layout (b) Logical Layout

TCS

Brake 4

RPM 4RPM 3RPM 2RPM 1

Brake 3Brake 2Brake 1

Fig. 1: Bus Topology on the example of the Traction Control System (TCS):
Sensors (wheel RPM) are read as input while actuators (brakes) work as output.

CAN transmits so-called CAN frames consisting of a priority, the actual mes-
sage payload, its length (1 to 8 bytes), and a CRC checksum followed by an
acknowledgment flag (see Fig. 2).

What makes CAN so widespread, are two important safety requirements it ful-
fils:

(1) the acknowledgement of reception and

(2) the arbitration of sending order.

The acknowledgement of reception (1) is important because the sender of a
critical message must be sure that it has been processed. Additionally, messages,

4 Also known as ESP - Electronic Stability Program

3

Priority Length Payload ACKCRC
Data
Meta Data

11 bits 4 bits 1 – 8 bytes 16bits 1 bit

Fig. 2: A single CAN frame.

which can only be sent one after the other, must be prioritized based on how
important they are (2). This ensures the hard real-time requirements of the
whole system.

The CAN bus achieves those two properties in hardware by using the electrical
concept of so-called dominant and recessive bits. Bits are always transmitted
synchronously at fixed time slots and dominant (logical 0) bits can overwrite
recessive bits (logical 1). This simple principle allows the sender to check if
at least one ECU has received the frame by reading the acknowledgement bit.
Similarly, the prioritization of frames is solved: Since each frame starts with its
11-bit priority, the dominant bits overwrite the recessive priority bits of other
frames transmitted at the same time. Only the highest priority frame is received
by all the connected nodes, while a lower priority device automatically backs off
when a recessive bit has been overwritten by somebody else. The priority is at
the same the time CAN sender ID. Hence, if the airbag has sender ID 0x050 and
front left brakes have ID 0x1A0, then the airbag has a higher priority because
0x050 is numerically lower than 0x1A0 (see Fig. 3).

0x050

8

Priority/ 
Sender ID Length Data

10 F0 01 00 00 30 00 E1 0x1A0

4 E0 F0 00 FF Airbag
Brake (Front Left)

Fig. 3: Example CAN messages from the airbag and brake captured on a 2005
Volkswagen Passat B6.

CAN buses have different standardized speeds ranging from 5 to 1000 kBit/s.
Most common are 500 kBit/s and 100 kBit/s, while 500 kBit/s networks have
higher demands in terms of cables and CAN bus tranciever chips. Depending on
the make and model, there are several CAN buses in a modern car. The most
prominent reasons for having more than one CAN bus are (1) Clear separation
for safety reasons, (2) fault-tolerance in case one bus fails, (3) cost reduction due
to lower speed CAN buses where high-speed CAN buses are not needed. An ex-
emplary CAN bus network and its interconnectedness is depicted in Fig. 4.

4

Powertrain CAN
(500 kBit/s)

Comfort CAN
(100 kBit/s)

Infotainment CAN
(100 kBit/s)

Instrument Cluster

CAN
Gateway

Diagnostics CAN (OBD)
(500 kBit/s)

(500 kBit/s)

Fig. 4: Interconnected CAN buses through a CAN gateway in a VW Passat B6
(source: “Volkwagen erWin Online”.

3 Design

3.1 Problem Statement

The steadily increasing number of components that are connected on the CAN
bus introduce a high likelihood that any of such components may be compro-
mised [4]. Unfortunately, such a compromise may have severe security (and
therefore also safety) implications to the automotive network. Of all possible
threats, message spoofing remains one of the largest unsolved issued on the cur-
rent CAN bus designs. In the worst case, a compromised component may inject
fake CAN messages, e.g., messages that make the parking assistant turn the
steering wheel.

In the current CAN design, there is no protection against these threats. First of
all, CAN has no scheme to verify the authenticity of the messages, i.e., neither
the sender information, nor the actual message payload. In principle, an attacker
that controls any component on the CAN bus, can thus

(a) spoof the identity of any other component (e.g., to escalate privileges), or

(b) send arbitrary payload (e.g., to perform malicious actions).

Our goal is to introduce authenticity schemes to CAN. First, we aim to add
sender authenticity to guarantee that CAN components can protect their identity
by denying messages that spoof their identity. Second, we plan to add content
authenticity to guarantee that a message was intentionally sent and its content
was neither manipulated nor replayed.

It may seem trivial to redesign CAN such that those features are added. However,
a practical solution faces several challenges:

C1 CAN has been designed primarily to match real-time characteristics of the
communication. Any security mechanism must not add unacceptable over-
heads that significantly increase latency or lead to message collisions.

5

C2 ECUs are typically microcontrollers with very constrained computational
power and storage space. Thus, heavy-duty crypto operations cannot be
performed as they would add an unacceptable overhead.

C3 CAN messages are limited to 8 bytes, which requires us to either squeeze
secure crypto into 64 bits or to use a higher level transmission protocol that
re-assembles longer messages that are spread across several CAN frames.

C4 Cryptographic keys must be individual per car to render extracting keys in
one car useless. Moreover, key agreement between ECUs must be dynamic
to allow for broken parts to be replaced.

C5 Adapting all ECUs and all messages would be disproportionate as many
ECUs are non-critical and do not need to be protected. Further, changing
messages would result in compatibility problems and enormous costs as mass-
produced components could otherwise no longer be used. To keep cost down,
as few ECUs as possible should be modified.

C6 Authenticated messages should be immune to replay attacks. However, in-
troducing a global state is against the design principle of CAN, which is
state-less in order to tolerate packet loss.

Instead, our goal is to retrofit vatiCAN to CAN by adding a backward-compatible
security add-on for selected senders and messages. Our vatiCAN add-on should
not influence components that do not support the new security mechanisms.
Components that do support vatiCAN, on the other hand, will benefit from
the authenticity checks. Such a model allows for a gradual, evolutionary change
towards a more secure CAN standard and can at the same time protect vital com-
ponents, such as power steering, brakes and airbag, from the beginning.

3.2 Threat Model

We assume an attacker who does not have physical access to the car but she can
fully compromise one (or a few) wireless ECUs that usually use several IDk k ∈
{0, . . . , 211} to send on the CAN bus. The attacker’s goal is to impersonate
another ECU with IDx with k 6= x. After the compromise of ECU with IDk, the
attacker has full flexibility in sending arbitrary messages to the CAN bus, i.e.,
she can fake sender identities and chose any message payloads.

The attacker is assumed not to compromise the ECU for which she intends to
fake the packets—otherwise the attacker would already be using the genuine
sender and can likely extract any cryptographic key material from the compro-
mised devices and thus fake the identity regardless of any cryptographic scheme.
Instead, we protect the identities of critical devices that might be impersonated
(and not compromised) by an attacker.

6

In addition, we consider an attacker that can passively monitor the CAN bus.
She can observe and record all messages that have been broadcasted on the CAN
bus. This way, the attacker can also learn about components’ identities.

3.3 High Level Concept

In this section, we describe the individual features of vatiCAN that address the
challenges C1 through C5.

Message Organisation (C1, C5). The cryptographic authentication mecha-
nism that vatiCAN uses must be decoupled from the actual message to remain
backward compatibility. We opted for a separate message with a different sender
ID such that legacy devices still see the original message content from the sender
ID they expect (C5). As a side effect, the induced cryptographic performance
and bandwidth overhead only applies to critical messages that have been manu-
ally selected at development time. For those selected messages, their additional
authentication message is then sent from a different ID for which only vatiCAN-
aware recipients listen. The separation of messages also has the advantage that
the recipient experiences no delay when receiving the original, unmodified mes-
sage (C1) and can compute the necessary cryptographic authentication in par-
allel to the reception of the authentication message.

Special care must be taken when selecting the sender ID for the additional au-
thentication message from IDj for each legacy sender IDi. Since senders corre-
spond to priorities on the CAN bus, a careless selection of a new j may result
in other messages being delayed if the priority is too high or may lead to the
priority inversion problem if the priority is too low. We therefore choose the new
j = i+ 1, which lowers the authentication’s priority by the smallest granularity
possible. Under the assumption that this new ID is not taken, this effectively
assigns the same priority to the authentication message as all other message
priorities are still lower or higher, respectively.

Message Authentication (C2, C3) vatiCAN supports content authenticity,
which cryptographically ensures that the sender was in possession of the re-
quired and correct cryptographic key. As a cryptographic primitive, we chose
a light-weight keyed-Hash Message Authentication Code (HMAC) since sym-
metric cryptography fulfils our requirements and is more suitable for embedded
resource-constrained devices with real-time requirements. As underlying hash
function for the HMAC construction, we chose the Keccak algorithm that has
been standardized as SHA-3. According to the performance evaluation of hash
functions on the popular Atmel embedded microcontroller [1], Keccak is the
fastest hash function (C2). We chose the Keccak parameters to produce 64 bit
output with 128 bits of rate and capacity (r = c = 128). The input size of

7

128 bits was chosen to accommodate the original payload of up to 64 bits, the
sender ID and a nonce (see below).

For messages that have been selected for authentication at development time, an
additional HMAC CAN frame is sent from the sender j. The recipients can then
verify if the HMAC matches the content received earlier, and if so, accept the
message. This two-step process can also be used to pre-condition the upcoming
action (e.g. move brakes to the disk) as soon as the first un-authenticated, legacy
content has been received and then defer the actual command execution (e.g.,
brake) until the authentication approval arrives. If the HMAC is invalid or has
not been received in a given time frame, the recipient can discard the message
and potentially issue a warning.

3.4 Replay Attacks (C6)

To prevent replay attacks, vatiCAN incorporates a nonce in the HMAC com-
putation. Otherwise an attacker could record a vital message and its HMAC and
then replay both later. In contrast to other authentication schemes, we do not
require the nonce to be non-predictable but we require the nonce not to produce
two messages with the same HMAC. Since we opted for not modifying the origi-
nal payload, we cannot distribute the nonce for each authenticated message. To
avoid an additional broadcast of the nonce, the sender and all receivers must
implicitly agree on the same nonce that must be different for each message. For
this purpose, we introduce a counter cj , which is specific for each sender j and
is incremented with each message sent by IDj . This ensures that the HMAC of
recurring CAN payloads is different each time. We chose sender-specific counters
rather than a global counter because some ECUs might not be online all the time
and most ECUs implement a hardware ID filter that only forwards CAN frames
from those IDs that are of interest to this particular ECU.

To account for the fact that messages might get lost or ECUs are temporarily in
power-safe mode, we additionally introduce the global Nonce Generator (NG).
The NG periodically broadcasts a random global nonce g, which shall be used
by all counters cj as their new value. This way, counters get synced up again
across different ECUs. In other words, on each broadcast of g, all ECUs reset
their cj = g and start counting from there with each message they send.

Consequently, the HMAC of the each message m is computed by the sender
(recall that i is the ID of the legacy sender, and j = i+1 is the ID of the HMAC
message) and by the recipient as follows:

h = HMAC(i | m | cj)

We incorporate the legacy sender i in the HMAC, such that no identical payloads
from different senders produce the same HMAC if they happen to share the same
key. Since messages on the CAN bus are received in the same order for all nodes,
choosing the right g is deterministic for all nodes. The g that was valid before

8

the legacy message from i was sent has to be used to verify the HMAC sent by
j in order to avoid race conditions.

The overall timing and message exchange is exemplified in Fig. 5, in which the
throttle sends a message that the engine validates. First, the NG broadcasts the
new nonce (761). Next, the throttle broadcasts the legacy message. Afterwards,
it computes the HMAC, using its legacy ID, the legacy message payload (30)
and the nonce. Simultaneously, the engine also computes the HMAC over the
message payload sent by the throttle. Finally, after the throttle broadcasts the
HMAC, the engine will verify if the computed HMAC values match.

B
R

O
A

D
C

A
S

T

B
R

O
A

D
C

A
S

T

B
R

O
A

D
C

A
S

T
7
6
1

3
0

Time

h = HMAC(0x080 | 30 | c0x081)

c0x081++ (now 762)

h’= HMAC(0x080 | 30 | c0x081)

c0x081++ (now 762)

hT
h

ro
tt

le i = 0x080

j = 0x081

h == h’ ?

E
n

g
in

e i = 0x280

j = 0x281

N
G i = 0x001

Fig. 5: Timing of interaction between NG, legacy and authenticated messages.

Even though the attacker can receive the current nonce g, she is not in possession
of the necessary key to compute the HMAC. In other words, g is not secret.

A nonce introduces a “state” in a protocol that is designed to be stateless to
accommodate for packet loss. Should a packet loss occur (e.g., damaged cables)
all subsequent HMACs could not be verified anymore until the next global nonce
g is broadcasted by the NG. Hence, the interval at which the NG broadcasts g at
the same time sets the deaf time, which is the maximum time an ECU might see
invalid HMACs after a hardware failure. A suggested frequency is every 50 ms,
which corresponds to an additional bus utilization of ≈ 1% at 500 kBit/s.

Spoof Detection & Prevention. A first primitive of vatiCAN is to mitigate
the risk that compromised components can fake the identity of other compo-
nents. To this end, we leverage the fact that CAN is a bus-oriented network,
and components thus receive messages from all other components on the bus. In
fact, if a component monitors the CAN communication, it can identify spoofed

9

messages by monitoring messages with its own sender identification. If a com-
ponent detects a message with its own sender ID, it must be a spoofed message.
Since messages transmitted by a CAN transceiver are not considered received
messages, this can be clearly distinguished. Once detected, this issue is made
available in software in the form of an exception. However, other recipients might
have already processed this message. This software solution is only suitable for
detecting and, e.g., displaying a message to the driver. Alternatively, it is also
possible to drop a detected spoofed message by intentionally destroying the CRC
checksum. However, the CRC checksum part is usually processed in hardware
and hence deliberate destruction is only possible when the CAN transceiver chip
is modified. A difficulty of this approach is that the CAN messages have to be
destroyed before the transmission of the spoofed frame is completed. Luckily, the
sender information is at the start of each frame and is synchronously processed
for bus arbitration anyway. This means an early detection stage is possible by
invalidating the CRC bits using dominant bits (e.g. all zeros) while a CAN frame
is still being processed. This approach is similar to the already implemented ac-
knowledgement (see Section 2) in the CAN bus standard, which is also set at the
correct timing of the ACK bit during transmission. We assume that (at least)
the NG—which is the only component that needs to be added for vatiCAN—is
protected with such a hardware-assisted spoofing prevention mechanism. Hence
an attacker cannot impersonate the NG and inject arbitrary nonces.

Should a sender ID be shared between ECUs, the spoof detection described above
cannot be applied. A shared sender ID could be used for door ECUs that simply
send a message that the door is open. Each door has an ECU that uses the same
sender ID because it only matters that a door is open but not which.

Key Distribution (C4) According to the HMAC construction, the used cryp-
tographic key is either padded to the length of the hash function’s input block
size, or it is hashed if it is longer than the block size. To avoid an additional
hashing operation, we recommend setting the length of the cryptographic key
exactly to the length of the input block size of the hash function: 128 bits.

We also chose not to use one global key, but individual keys per ECU. Of course,
it is also possible to group ECUs that share the same key. This saves precious
flash memory at the expense of reduced security. Typically, ECUs form logical
clusters, e.g., all four wheel rotation sensor ECUs, and all four brake ECUs form a
logical cluster of traction control. vatiCAN leverages this and supports assigning
sets of IDs the same cryptographic key, bonding them to a group.

The most critical aspect is the key provisioning: the process of getting keys into
ECUs in the first place. The cryptographic key for each ECU or group needs to
be provisioned to each ECU that is part of that logical cluster. Generally, two
possibilities exist:

(a) During Assembly. The keys could be generated randomly during produc-
tion and automatically be injected into the flash memory of the correspond-

10

ing ECUs. However, this makes replacing ECUs after a fault or accident
more involved, as either keys have to be extracted from other ECUs or new
keys need to be generated and distributed to all clusters that the faulty ECU
communicates with.

(b) Key Agreement. Alternatively, keys can also be agreed upon using Diffie-
Hellman key exchange every time the car is turned on. However, this option
has several disadvantages: ECUs that switch on on-demand have to re-run
the key agreement. Moreover, man-in-middle attacks are possible without
certificates stored in the ECUs, which is not practical. And lastly, multi-
party key exchange is non-trivial for an embedded microcontroller.

This is why we chose option (a) to provision the keys during production of an
ECU. In case an ECU needs to be replaced, all other ECUs need to be updated
with the new key. Luckily, software updates through the on-board diagnostics
(OBD) port are commonplace and supported by most ECUs. This allows for
re-programming of keys without physically removing the ECUs from the car.
To protect against malicious key updates by compromised ECUs, the key provi-
sioning could be protected using asymmetric cryptography. For example, signed
updates are a viable option, despite the fact that they are relatively slow.

4 Implementation

We implemented a proof-of-concept of vatiCAN on the popular Atmel AVR
microcontrollers and used off-the-shelf automotive components, such as an in-
strument cluster, that act as legacy devices. Our implementation is also available
as download in the form of a library for the popular Arduino development envi-
ronment (see Appendix A).

4.1 Hardware Platform

As hardware platform, we used Atmel AVR microcontrollers, each of which is
connected to a Microchip MCP2515 CAN bus controller over SPI [11]. The CAN
bus is built on a work bench top and connects an off-the-shelf automobile in-
strument cluster as symbolic legacy device. The bench top CAN test network re-
sembles a Hardware-in-the-Loop-Test (HIL), which is common in the automobile
industry [5]. We used this hardware to build the prototype (see Figure 6):

Atmel AVR ATMega328p 8 bit microcontroller
(32 kB of flash, 2 kB of SRAM, 16 MHz)

Microchip MCP2515 CAN bus controller chip (3 TX / 2 RX buffers)
Seat Ibiza instrument cluster From the 2009 model 6J
Logitech Formula GP Accelerator and brake pedals

Components of the topology of the HIL setup shown in Fig. 7 are:

11

(a) Electronic Throttle Control (ETC)

(b) Powertrain Control Module (PCM)

(c) Instrument cluster (speed, RPM, airbag warning, ABS warning).

(d) Auxiliary Simulator (AS) for airbag, brakes, and wheels.

Fig. 6: Bench HIL setup with original instrument cluster ECU and re-engineered
ETC and PCM ECUs.

ETC PCM

CAN
AS

Instrument Cluster

Throttle
Airbag
Brakes

Wheel Spin

Fig. 7: Hardware-in-the-Loop Test (HIL): ETC, PCM and AS.

The ETC reads the analog potentiometer mounted to the accelerator pedal (0%
to 100% pressed) and broadcasts the value on the CAN bus so that it can be
interpreted by the PCM. The PCM in turn simulates an internal combustion
engine and broadcasts engine RPM and oil temperature on the CAN bus. The
Seat Ibiza instrument cluster shows the engine RPM using an analog dial. The
corresponding speed that the speedometer dial shows is being sent by the AS and
calculated from the engine RPM and currently selected (simulated) gear.

12

4.2 Secure Message Selection

The strong-suit of vatiCAN is its interoperability and backward-compatibility
with legacy devices that do not understand authenticated messages. For this
reason, we chose the original instrument cluster from a 2009 Seat Ibiza, which
shows speed and engine RPM despite being secured by vatiCAN. Not all ex-
changed messages in the HIL were secured, because not all messages are vital.
We chose to secure the (1) throttle position message, (2) engine RPM, (3), wheel
rotation (vehicle speed), and (4) anti-lock brake controller

All the other messages needed to operate properly (see Appendix B) are not
authenticated as they are not vital.

4.3 Software Architecture

The vatiCAN library abstracts CAN bus access to sending and receiving mes-
sages, while received messages incorporate the notion of being authenticated or
not. The application using vatiCAN registers known sender IDs for authenticated
messages and two callbacks. One callback for receiving messages (legacy and au-
thenticated) and one for errors (authentication mismatch, timeouts).

For this purpose, the vatiCAN library keeps a list of authenticated sender IDs
i and thus can perform a look-up based on the sender ID for every received
CAN frame. Then, vatiCAN knows whether to expect an additional authenti-
cation CAN frame from j. All CAN frames are delivered immediately to the
application using the provided call-backs. However, CAN bus frames originat-
ing from senders not in the list of authenticated senders are flagged insecure
while frames originating from senders that should authenticate their messages
are flagged as not authenticated yet. If authentication messages are expected,
the HMAC calculation is started in the background. The application code using
vatiCAN can then decide whether to prepare or pre-compute intermediate steps
until the authentication message arrived and was verified. If the authentication
message arrives, vatiCAN automatically compares the computed HMAC to the
received authentication message and either invokes the message reception call-
back indicating an authenticated message, or invokes the error call-back if the
HMAC comparison failed. The message verification is designed in such a way
that the order of internal HMAC computation and authentication message re-
ception does not matter. Whichever completes last, triggers the comparison and
forwards either the message or an error to the application.

Since AVR ATmega microcontrollers do not support hardware multi-threading,
the background HMAC computation is implemented as an interrupt service rou-
tine (ISR), which is triggered on CAN frame reception and defers computations
to a later point indicated by the application code. The interaction diagram shown
in Fig. 8 depicts the processing of a single, authenticated message.

13

C
A

N

B
u

s
C

tr
l.

M
ic

ro
c
o

n
tr

o
ll
e
r

IRQ

RX

Defer (HMAC,m)

V
a

ti
C

A
N

A
p
p
lic

a
ti
o

n

App. Code App. Code

h’ = HMAC(m)

D
o
W

o
rk

()

Receive

au
th

=
fa

ls
e,

 m

IRQ

RX

App. Code

h == h’ ?

Receive

au
th

=
tr

u
e,

 m

App. Code

m h

Fig. 8: CAN bus frame reception, message processing and the application.

The implemented code consists of a vatiCAN CAN bus interface library written
in C++ and a hash function that currently uses the Keccak (SHA-3) implemen-
tation in assembler that was adapted from [1]. The C++ library consists of only
314 lines of code, while the hash function in assembler consists of 250 lines of
code. The compiled code sizes can be found in the evaluation in Section 5.

5 Performance Evaluation

We evaluated the performance in terms of message reception delay, bus conges-
tion due to added CAN frames and in terms of memory footprint. The evaluation
was conducted on the hardware presented in Section 4. To obtain time measure-
ments, we used the internal ATmega timer with a pre-scaler of 64, which divides
the used 16 Mhz clock speed in 250 kHz accuracy (4 µs accuracy). All experi-
ments have been conducted on the very common 500 kBit/s bus speed.

M
ic

ro
c

o
n

tr
o

ll
e

r
M

ic
ro

c
o

n
tr

o
ll

e
r

CAN Bus

R
E

C
E

IV
E

R
S

E
N

D
E

R

HMACS

Msg

Msg

HMACR

V
a
ti
C

A
N

A
p
p

lic
a

ti
o

n
V

a
ti
C

A
N

A
p

p
lic

a
ti
o

n

send

AuthMsg

cmp
recv

send

recv

Time

Fig. 9: Caption for image

We then measured the time it takes to
calculate a single HMAC for a CAN
frame, given nonce and sender ID as
additional input. The HMAC calcula-
tion takes about 47,600 clock cycles
or 2.95 ms for the used clock speed
of 16 Mhz. The total time the recep-
tion of a message is deferred due to the
calculation of the HMAC and compar-
ison with the received authentication
CAN frame is 3.3 ms. That means, the
look-up if the sender ID is in the list
of secure senders plus the string comparison of calculated and received HMAC
make up for 0.35 ms. Note that the application gets notified immediately after
reception of the payload and can start precomputations. This means that both
the sender and receiver can compute the HMAC of the payload in parallel.

Fig. 9 illustrates the parallel computation. HMACS is the sender’s computa-
tion of the HMAC including the currently valid nonce, while HMACR is the

14

receiver’s computation of the received message Msg. The HMAC computations
take place simultaneously on the receiver’s and sender’s side, as the receiver
starts computing the HMAC as soon as the plain text message Msg arrives.
The receiver then compares HMACR against HMACS to check if they match.
This parallel computation is a major benefit of HMAC compared to asymmet-
ric cryptographic message signatures, for which the receiver has to wait for the
signature before further validations.

Next, we measure the round-trip time for legacy vs. vatiCAN-secured CAN
frames. In case of legacy frames, one microcontroller broadcasts an 8-byte CAN
frame and another microcontroller receives the message and immediately broad-
casts another message. The time measured is the interval between sending the
first message and after receiving the response. For plain, unauthenticated 8-byte
CAN frames, the ping-pong time interval is 1.08 ms and consequently 2 mes-
sages were exchanged in total. For vatiCAN, 2 messages have to be sent and 2
messages have to be received. Both microcontrollers must calculate 2 HMACs
(one for sending, one for verification). The total time between sending the secure
message until after reception of the secure response is 4.5 ms.

Please note that the used ATmega 8 bit microcontrollers represent the lower
bound of an automotive performance evaluation. The common v850 32 bit mi-
crocontrollers offer ≈ 2.6× the performance.

5.1 Bus Congestion.

For safety reasons, it is important to know the limits of the CAN bus network in
terms of throughput in order to ensure that no messages get lost. Car manufac-
turers also use HIL tests to ensure a safety margin such that under all conceivable
conditions the maximum bandwidth and thus the maximum intended latency is
never exceeded. To measure the typical utilization of a heavily used bus, we
chose the 500 kBit/s instrument cluster CAN (see Fig. 4) because it combines
messages from the powertrain CAN bus, the infotainment CAN bus, and the
comfort CAN bus. Appendix B lists all recorded messages and their frequency
of occurrence in the VW Passat B6.

Due to the re-occurring nature of CAN messages, every 100 ms the same mes-
sages were seen on the bus. Per second, 560 messages are sent with a total payload
of 4, 230 bytes (33, 840 bits). Due to the CAN frame overhead (start bit, length
bits, CRC, stuff bits etc.) each frame needs an additional 47 bits to be transmit-
ted. Hence, per second a total of 33, 840+560 ·47 = 60, 160 bits are transmitted.
We tested the maximum possible bandwidth under realistic conditions by flood-
ing the bus with 8-byte CAN frames. Counting whole CAN frames (payload +
header bits) we achieved a throughput of 448 kBit/s. Thus, the measured uti-
lization of 60.2 kBit/s corresponds to 13.4% utilization. With 3 out of 13 senders
protected by vatiCAN, per second 110 messages of the 560 total messages are
protected. This accounts for additional 110 · (47 + 64) bits = 12, 210 bits. Thus,
the total bus utilization increases to 72.4 kBit/s (16.2%).

15

5.2 Memory Footprint.

The total vatiCAN library size is 2152 bytes of AVR instructions of which
678 bytes are attributed to the Keccak implementation and the remaining 1474 bytes
are the surrounding vatiCAN message verification, HMAC and interrupt logic. In
addition, vatiCAN has to store an additional 32-bit word for the sender’s nonce
(4 byte) per sender ID. Even in the unlikely case that an ECU expects 100 dif-
ferent vatiCAN sender IDs, this would result in mere 100*4=400 bytes.

6 Security Evaluation

The goal of an attacker is to inject a specific, potentially dangerous CAN frame
and to forge its HMAC. Since the attacker needs to forge an HMAC for one spe-
cific message (or a few specific messages), it does not suffice to find an arbitrary
collision in the underlying hash. Instead, the attacker’s goal is to find a concrete
collision or the actual cryptographic key.

We chose the Keccak (SHA-3) parameters (r = c = 128, n = 64) such that
it projects its input to 64 bits (8 byte CAN frame) output. While an output
size of merely 64 bits is significantly shorter than the typical length of SHA3’s
224 bits, the increased advantage of the attacker is offset by the limited validity
of a message due to the cyclic message nature of CAN bus and the invalidation
through the Nonce Generator NG.

The cryptographic strength of the used HMAC construction depends on the
length of the secret key and on the chosen output size. An attacker could record
a payload message and its corresponding HMAC. Using the known sender j and
the calculated nonce cj , she can then brute-force all possible keys until she finds
an input that matches the recorded HMAC. Because of the fixed 128 bit key,
an attacker would need 2127 tries on average. Hence, the success probability
Pkey = 2−127. The other option, to guess the output of the HMAC correctly
is Pout = 2−63 due to the 64 bit output length. Please note that the birthday
paradox in finding an arbitrary hash collision does not apply here, since the
attacker has to match a specific plaintext legacy payload. On the Atmega328p
running at 16 MHz, the computation of 232 HMACs would need 232 · 2.95 ms =
12, 670, 154 s = 146 days, which is well outside the validity period set by the NG.
Although a faster ECU could brute-force the HMAC quicker, this is likely not
fast enough. Even though a dual-core 32-bit ARM 1 GHz (e.g., the infotainment
system) would be about 100x faster, it still takes 24 hours to brute-force for a
nonce update interval of 50 ms.

It should be considered that an attacker might successfully compromise an ECU
on which a key is stored that is used for vatiCAN. If keys are grouped and used
on multiple ECUs, the attacker can use this key to generate valid HMACs for
any sender to which the group key belongs.

16

7 Related Work

The first paper that extensively demonstrated practical vulnerabilities of a mod-
ern automobile [10] was published in 2010 and has been cited many times in
academia and the press since. The authors demonstrated that it is possible to
inject code into ECUs, which are connected to various CAN buses. Further, they
demonstrated that bridging the CAN gateway is possible, effectively connecting
a less-critical to a highly-critical CAN bus. Further, they demonstrated that even
remote attacks exist that do not require physical access to the car [2].

Despite the ECUs being the culprit in terms of vulnerabilities, the underlying
CAN bus makes a life-threatening attack feasible since a compromised ECU
may affect any other connected system. In recent years, several authentication
methods for broadcast buses have been introduced. The closest related work
to vatiCAN is CANAuth [16]. CANAuth proposes a similar HMAC-based au-
thentication scheme, however, their goal was to incorporate the HMAC into the
payload CAN frame itself. They achieve this by basing their solution on CAN+, a
physical layer modification of the CAN protocol to achieve higher data rates [18].
Since the additional CAN+ bits are stuffed in-between legacy CAN bits, it is
backward-compatible to CAN controllers, which do not support CAN+. How-
ever, CAN+ would require new hardware to be used for the nodes that should
support CANAuth, and no such hardware exists yet. Our goal was to update
software only and to re-use existing hardware and CAN controllers.

Also purely theoretical work on the topic of CAN bus sender authentication ex-
ists [17] that formalizes which cryptographic primitives are required to guarantee
secure communication between different ECUs – even across different buses. The
authors consider key distribution, PKIs and encrypted communication. In con-
trast to our solution, their sender authenticity is proven using signature, i.e.
asymmetric cryptography. A similar solution to our spoofed message detection
has been presented in [12]. In contrast to invalidating the spoofed message by
destroying the CRC, the authors detect the spoofed message and immediately
send an error frame on the bus.

More general, the TESLA protocols [14,15] are designed to authenticate a broad-
cast sender with symmetric cryptography. However, they use delayed disclosure
of keys, i.e. the sender uses uses a symmetric key for the HMAC that nobody
else knows. Consequently, at reception time, no receiver is able to authenticate
the packet until the key will be made available in a later packet. This clearly
violates our real-time challenge C1. While the improved version of TESLA [14]
supports immediate disclosure of the key, each packet incorporates a hash of the
succeeding packet to build a chain. This is clearly unsuited for highly lively but
predictable CAN bus traffic.

Finally, the AUTOSAR standard [6] also supports an HMAC-based message
authentication scheme. In contrast to vatiCAN, Autosar is not backward com-

17

patible, as Autosar uses higher level communication (PDUs) to which an HMAC
is appended. Moreover, Autosar does not support spoofing prevention.

8 Limitations and Future Work

Due to the rather restrictive payload of 8 bytes maximum, several protocols
have emerged that build on top of CAN to implement higher layers, such as
longer payloads and transmission control. Popular examples are KWP2000 [9] or
ISO TP [8], which are commonly used for software updates and ECU diagnostics.
Using vatiCAN, especially for software updates originating from outside the
vehicle, makes sense. However, the current implementation which authenticates
every single CAN frame would induce an impractical bandwidth overhead. A
more elegant solution would be to authenticate the payload on the KWP2000 or
ISO TP layer by attaching a digital signature.

While the achieved latency of only 3.3 ms on a simple microcontroller is seem-
ingly fast, for high motorway speeds, a few milliseconds make a difference be-
tween life and death. Should vatiCAN be applied to active safety functions of
a car (e.g., collision avoidance through active braking), the induced latency of
3.3 ms results in a traveling distance of 0.9 m at motorway speed of 100 km

h .

9 Conclusion

The adaptation of new technology in the automobile sector is a cautious and slow
process. It is therefore important to change only a few parts, while the estab-
lished and reliable majority of components can be re-used. Therefore, vatiCAN
is designed to be backward-compatible to allow tried and trusted components to
rely on the same CAN messages without need for modification. However, those
parts for which a manufacturer decides to enhance security can be easily pro-
tected by means of a software upgrade, which uses vatiCAN instead of another
CAN bus interface library. Our vatiCAN implementation is able to deliver real-
time protection to ensure that a compromised ECU cannot be leveraged to fake
messages, which are potentially life-threatening. The induced latency of 3.3 ms
for authenticated messages is fast enough for most situations and shows the
practicality and feasibility of the approach. However, for highly timing-critical
functions, such as brakes, a millisecond delay might be unacceptable.

While the presented results should encourage automakers to implement what is
currently possible given a dated CAN bus architecture, it also shows the need for
a novel design to achieve stronger security claims and better performance.

Acknowledgments. This work was supported by the German Ministry for
Education and Research (BMBF) through funding for the Center for IT-Security,
Privacy and Accountability (CISPA).

18

References

1. J. Balasch, B. Ege, T. Eisenbarth, B. Gérard, Z. Gong, T. Güneysu, S. Heyse,
S. Kerckhof, F. Koeune, T. Plos, et al. Compact implementation and performance
evaluation of hash functions in ATtiny devices. Springer, 2013.

2. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive experimental
analyses of automotive attack surfaces. In USENIX Security Symposium, 2011.

3. Dr. Ing. h.c. F. Porsche Aktiengesellschaft. Annual report 2004/2005.
http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=

download&id=annualreport-200405&lang=none&filetype=default.
4. C. Ebert and C. Jones. Embedded software: Facts, figures, and future. Computer,

(4):42–52, 2009.
5. H. Hanselmann. Hardware-in-the loop simulation as a standard approach for de-

velopment, customization, and production test of ECUs. Technical report, SAE
Technical Paper, 1993.

6. http://autosar.org. AUTOSAR Specifications 4.2, 2016.
7. ISO. ISO 11898-1:2003 Road vehicles – Controller area network (CAN) – Part 1:

Data link layer and physical signalling. Iso, International Organization for Stan-
dardization, Geneva, Switzerland, 1993.

8. ISO. ISO/DIS 15765-2 Road vehicles – Diagnostic communication over Controller
Area Network (DoCAN) – Part 2: Transport protocol and network layer services.
Iso, International Organization for Standardization, Geneva, Switzerland, 2011.

9. ISO. ISO 14230-2:2013 Road vehicles – Diagnostic communication over K-Line
(DoK-Line) – Part 2: Data link layer. Iso, International Organization for Stan-
dardization, Geneva, Switzerland, 2013.

10. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, et al. Experimental Security Analysis of a
Modern Automobile. In IEEE Symposium on Security and Privacy, pages 447–462,
2010.

11. F. Leens. An introduction to I2C and SPI protocols. Instrumentation & Measure-
ment Magazine, IEEE, 12(1):8–13, 2009.

12. T. Matsumoto, M. Hata, M. Tanabe, K. Yoshioka, and K. Oishi. A method of
preventing unauthorized data transmission in controller area network. In Vehicular
Technology Conference (VTC), pages 1–5. IEEE, 2012.

13. N. Navet and F. Simonot-Lion. Automotive embedded systems handbook, 2008.
14. A. Perrig, R. Canetti, D. Song, and J. D. Tygar. Efficient and secure source au-

thentication for multicast. In Network and Distributed System Security Symposium
(NDSS), volume 1, pages 35–46, 2001.

15. A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and
signing of multicast streams over lossy channels. In IEEE Symposium on Security
and Privacy, pages 56–73. IEEE, 2000.

16. A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth – A simple, back-
ward compatible broadcast authentication protocol for CAN bus. In ECRYPT
Workshop on Lightweight Cryptography 2011, 2011.

17. M. Wolf, A. Weimerskirch, and C. Paar. Security in automotive bus systems. In
Proceedings of the Workshop on Embedded Security in Cars (ESCAR), 2004.

18. T. Ziermann, S. Wildermann, and J. Teich. CAN+: A new backward-compatible
Controller Area Network (CAN) protocol with up to 16× higher data rates. In
Design, Automation & Test in Europe Conference & Exhibition, 2009. DATE’09.,
pages 1088–1093. IEEE, 2009.

19

http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=download&id=annualreport-200405&lang=none&filetype=default
http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=download&id=annualreport-200405&lang=none&filetype=default
http://autosar.org

A Availability.

Our vatiCAN implementation is available as free software download published
under the LGPL v2. We provide a library for the popular Arduino develop-
ment environment for Atmel’s AVR microcontrollers. Its source code is publicly
available at https://automotive-security.net/securecan.

B VW Passat B6 CAN Messages

The following messages were captured on the instrument cluster CAN bus on a
VW Passat B6 and are reproduced in the HIL to have realistic bus utilization.

Function CAN ID Every Frequ. Length Bytes/s Exemplary Payload vatiCAN
Airbag 050 20 ms 50 Hz 4 bytes 200 E0:F0:00:FF !
Steering 0C2 20 ms 50 Hz 8 bytes 400 F0:00:00:00:80:40:00:CF !
Electronic Power Steering (EPS) 0D0 50 ms 20 Hz 6 bytes 120 D7:C0:61:08:5E:20 !
ABS1 1A0 10 ms 100 Hz 8 bytes 800 00:00:00:00:FE:FE:00:00 !
ABS2 4A0 10 ms 100 Hz 8 bytes 800 00:00:00:00:FE:FE:00:00 !
Brakes 1AC 20 ms 50 Hz 8 bytes 400 00:80:7F:7F:69:A1:00:C2 þ
ETC / Engine RPM 280 20 ms 50 Hz 8 bytes 400 49:00:20:20:00:FA:36:00 þ
Engine Status 35B 100 ms 10 Hz 8 bytes 80 0F:00:00:B8:28:19:02:96 !
Coolant 288 20 ms 50 Hz 8 bytes 400 43:78:00:04:00:56:00:00 !
Instrument Cluster 320 20 ms 50 Hz 8 bytes 400 02:00:00:ff:ff:cd:ff:96 !
Vehicle Speed 5A0 100 ms 10 Hz 8 bytes 80 00:00:00:5B:B6 þ
Instrument Cluster 621 100 ms 10 Hz 7 bytes 70 04:00:01:00:02:00:00 !
Instrument Cluster 727 100 ms 10 Hz 8 bytes 80 02:00:00:ff:ff:c6:ff:9e !

Throughput (net) 33840 bits/s
Throughput (overhead) 26320 bits/s
Throughput (gross) 60160 bits/s
Average Utilization 13.4%

20

	– vatiCAN – Vetted, Authenticated CAN Bus

