
ZEUSMILKER: Circumventing the P2P Zeus
Neighbor List Restriction Mechanism

Shankar Karuppayah∗¶, Stefanie Roos‡, Christian Rossow§, Max Mühlhäuser∗, Mathias Fischer†

∗ Telecooperation Group
Technische Universität Darmstadt / CASED, Germany

firstname.lastname@cased.de

† Networking and Security Group
International Computer Science Institute, USA

mfischer@icsi.berkeley.edu

§ Cluster of Excellence, MMCI
Saarland University, Germany

crossow@mmci.uni-saarland.de

‡Privacy and Data Security
TU Dresden, Germany

stefanie.roos@tu-dresden.de

¶ National Advanced IPv6 Center,
Universiti Sains Malaysia (USM),

Malaysia

Abstract—The emerging trend of highly-resilient Peer-to-Peer
(P2P) botnets poses a huge security threat to our modern society.
Carefully designed countermeasures as applied in sophisticated
P2P botnets such as P2P Zeus impede botnet monitoring and
successive takedown. These countermeasures reduce the accuracy
of the monitored data, such that an exact reconstruction of
the botnet’s topology is hard to obtain efficiently. However, an
accurate topology snapshot, revealing particularly the identities
of all bots, is crucial to execute effective botnet takedown
operations. With the goal of obtaining the required snapshot
in an efficient manner, we provide a detailed description and
analysis of the P2P Zeus neighbor list restriction mechanism. As
our main contribution, we propose ZEUSMILKER, a mechanism
for circumventing the existing anti-monitoring countermeasures
of P2P Zeus. In contrast to existing approaches, our mechanism
deterministically reveals the complete neighbor lists of bots and
hence can efficiently provide a reliable topology snapshot of P2P
Zeus. We evaluated ZEUSMILKER on a real-world dataset and
found that it outperforms state-of-the-art techniques for botnet
monitoring with regard to the number of queries needed to re-
trieve a bot’s complete neighbor list. Furthermore, ZEUSMILKER
is provably optimal in retrieving the complete neighbor list,
requiring at most 2n queries for an n-elemental list. Moreover, we
also evaluated how the performance of ZEUSMILKER is impacted
by various protocol changes designed to undermine its provable
performance bounds.

I. INTRODUCTION

Cyber-crimes like banking fraud, spam campaigns, and
denial-of-service attacks are a profitable business. Most of
these attacks originate from botnets, a collection of vulnerable
machines infected with malware that are being controlled by
a botmaster via a Command-and-Control Server (C2). Tradi-
tional botnets utilize a centralized client-server architecture
for the communication between the botmaster and its bots.
Thus, after such a C2 is taken down, the botmaster cannot
communicate with its bots anymore. Recent P2P-based botnets,
e.g., P2P Zeus [1], Sality [2], or ZeroAccess [3], adopt a
distributed architecture and establish a communication overlay
between participating bots. In fact, all attacks against P2P-
based botnets require detailed insights into the nature of these
botnets, in particular the botnet population and the connectivity
graph between the bots [4]. As a consequence, monitoring such
botnets is an important task for analysts.

Monitoring P2P botnets requires reverse-engineering of the
botnet’s malware to at least extract the botnet’s communication
protocol as well as a seedlist of potential active bots. After-
wards, an analyst can start gathering intelligence about the
botnet by either injecting sensor nodes or by actively crawling
it. Sensor nodes [4], [5] can obtain a complete overview of the
botnet population, but do not reveal the graph structure of the
botnet. However, such connectivity information (“who knows
whom”) is required to launch successful takedown attempts
such as sinkholing [4], [6]. In contrast, crawling relies on
graph traversal techniques and thus by design provides the
connectivity graph of a botnet. Here, monitoring mechanisms
utilize the bots in P2P botnets to reveal information about
their neighborhood relationships to increase the view on the
connectivity of the network. Initially provided with the contact
information of at least one active bot, the crawler iteratively re-
quests neighborhood information from the bots already known
to it. In this manner, a snapshot of the botnet’s topology can
be obtained.

As P2P botnets represent valuable assets to their botmas-
ters, current variants come with additional countermeasures to
impede their monitoring. Such measures could be restrictions
on the size of exchanged neighbor lists or local reputation
mechanisms to detect and blacklist crawlers. One of the most
sophisticated P2P botnets known to date that already imple-
ments several monitoring countermeasures is P2P Zeus [1].
Each bot in P2P Zeus maintains a neighbor list that consists
of a small subset of other active bots in the network. Bots
regularly exchange subsets of these lists on a request basis
to maintain and improve the connectivity of the botnet. The
exchanged subsets are selected based on the unique keys of
the participating bots. Hence, two legitimate bots with two
different keys that request a neighbor list from the same other
bot, may receive a totally different set of entries. Thus, a
botnet crawler has to query each node multiple times using
distinct spoofed keys, which decreases the performance of a
crawler considerably [7]. Furthermore, P2P Zeus utilizes a lo-
cal reputation mechanism to blacklist IP addresses of bots that
request neighbor lists too frequently. In this manner, simple
crawlers, e.g., requesting neighbor list using multiple randomly
chosen requester keys [4], are prevented from obtaining the

complete neighbor list of a bot. However, exactly this complete
neighbor list is vital to launch successful attacks against P2P
botnets. Failure to obtain the complete lists, i.e., some nodes
left undiscovered, may allow the botmasters to regain control
of their botnet through these nodes, hence rendering takedown
attempts ineffective.

In this paper, we propose ZEUSMILKER, a novel crawling
algorithm that is capable of circumventing the neighbor list
restriction mechanism of P2P Zeus. ZEUSMILKER exploits
the described mechanism for choosing the exchanged sub-
sets of neighbor lists. By requesting a node’s neighbor list
using strategically chosen spoofed keys as crawler identities,
ZEUSMILKER provably retrieves or milks (as in milking a
cow) the complete neighbor lists of bots at minimal overhead.
Although ZEUSMILKER is a specific solution to P2P Zeus’s
countermeasure, take note that its core idea can be generalized
to exploit any domain that utilizes XOR-distance as a metric
of ’closeness’, e.g., Kademlia [8].

We evaluate the performance of ZEUSMILKER the-
oretically and via extensive simulations. We prove that
ZEUSMILKER obtains the complete neighbor list of size n
in at most 2n neighbor list requests, thus being optimal with
regard to the worst-case complexity. Furthermore, our simula-
tion results indicate that ZEUSMILKER performs significantly
better than existing crawling mechanisms.

Finally, to anticipate the next steps of the botmasters,
we propose two new countermeasures against crawling. We
compare them in a simulation study regarding their ability to
impede botnet monitoring with the anti-crawling mechanism
built into the Sality botnet. Indeed, our simulation results
indicate that our countermeasures successfully decrease the
crawling performance of ZEUSMILKER and other known
crawling mechanisms.

The remainder of this paper is organized as follows:
Section II discusses the related work in monitoring P2P-based
botnets with emphasis on P2P Zeus. Section III introduces our
ZEUSMILKER algorithm, its theoretical analysis, and summa-
rizes the findings of an extensive simulation study on crawling
P2P Zeus. Section IV introduces anti-crawling countermea-
sures and presents evaluation results on them. Finally, Section
V summarizes our contributions and describes the future work.

II. RELATED WORK

P2P botnets are an ongoing research topic. In particu-
lar, their architecture and potential takedown strategies have
received considerable attention in the research community.
We first summarize related work on analyzing existing P2P
botnet structures, and afterwards present techniques for botnet
monitoring as well as corresponding countermeasures.

Rossow et al. provide an overview of eight P2P-based
botnet families [4], detailing their architecture. They suggest
countermeasures against P2P botnets, such as intelligence
gathering and disruption attacks. The P2P Zeus botnet, which
is the focus of our study, is described in detail in [1]. The
authors reverse-engineered the protocol and conclude that P2P
Zeus is one of the most advanced botnets ever observed.

Monitoring approaches for botnets have been an active
topic of research for nearly a decade. Early approaches on
crawling the Storm botnet [9], [10] focus on finding as many
bots as possible, but fail to provide a complete picture of
an individual bot’s neighborhood relationship. A similar, but

more sophisticated approach for enumerating the complete
botnet population was proposed by Karuppayah et al. in [7]
by presenting LICA, a generic crawling algorithm that aims
to minimize the number of queries needed for enumeration
by being as less invasive as possible. Due to its generality,
LICA does not consider system-specific countermeasures and
assume that the complete neighbor list can always be obtained,
deferring the question of how to obtain the list to the specific
system. Based on this observation, Rossow et al. present
the only attempt to crawl these bots despite the existing
countermeasures [4]. They repeatedly query P2P Zeus nodes
for their neighbor lists, spoofing different source keys chosen
uniformly at random. However, they achieve only limited
accuracy and are not able to provable retrieve the complete
neighbor list of a bot.

As a reaction to these monitoring activities, researchers
proposed botnet designs that prevent disruption and enu-
meration [11]–[14]. To the best of our knowledge, none of
these proposals has been deployed in practice by attackers.
In addition, due to lack of prototypical implementations, we
could not test if these proposals are actually robust against any
kind of enumeration. Instead, we focus on one of the most
powerful botnet that has been observed in practice, P2P Zeus,
and design a more efficient algorithm for crawling it.

III. ZEUSMILKER

In this section, we first introduce some background on
the P2P Zeus botnet. Afterwards, we state and discuss our
algorithm for retrieving the entire, i.e., complete, neighbor list
from a bot. Finally, we present the evaluation results of our
algorithm on a real P2P Zeus dataset.

A. System model and notation
We start by giving a general definition of a P2P botnet and

introduce the required notation. Then, we explain how this
definition is mapped to P2P Zeus.

A P2P botnet is characterized by a directed graph G =
(V,E), where V is the set of bots or peers. The set E ⊆ V ×V
denotes the connections between bots. In the remainder of this
paper we use the terms bot, peer, and node synonymously.
Each bot v ∈ V maintains a neighbor list NLv = {w ∈ V ∣∀w ∈
V ∶ (v,w) ∈ E}.

All bots follow a membership management protocol that
establishes and maintains neighborhood relationships in the
botnet to ensure a connected overlay. An important feature of
such a protocol is the capability of retrieving information on
potential neighbors from other bots to replace unresponsive
bots within a bot’s own neighbor list. For this purpose, a peer
v can request from its neighbor w, a subset of w’s neighbor
list using the method requestL that returns a list L ⊆ NL. The
i-th element of a list M is denoted by M[i]. In P2P botnet
crawling, crawlers exploit this method by iteratively requesting
the returned neighbors for their neighbors using the requestL
method until there are no more new nodes returned. From the
retrieved neighbor lists, the topology of the network, i.e., the
graph G = (V,E), can be reconstructed.

Each bot is assigned a unique key in the form of a b-
bit string. We use 1(i) to denote a bit string of i 1s and
analogously 0(i) denotes a string of i 0s. Furthermore, ∣s∣
denotes the length of a string s, and ∣∣ is the concatenation
operator. For two b-bit keys x and y, the function cp(x, y)

Algorithm 1: requestL(s)
1 for i = 0; i < l && i < ∣NL∣; i + + do
2 L[i]← NL[i]
3 for i = l; i < ∣NL∣; i + + do
4 for j = 0; j < l; j + + do
5 if XOR(NL[i], s) < XOR(L[j], s) then
6 L[j]← NL[i]
7 break

8 return L

returns their common prefix. An order on the set of b-bit
keys is defined by associating the key’s bits bb−1 . . . b0 with
an integer value ∑b−1

i=0 2bi . In particular, a key y is defined
bigger, smaller or equal than a key x by comparing the integer
values. The operators + and − are then defined as the respective
operators in Z, the set of all integers. In particular, we call
two keys x and y consecutive if y = x + 1 mod 2b. We use
I(x, y) = {x + 1, . . . , y − 1} to denote the set of all possible
keys ’between’ x and y. Note that the set is empty if y ≤ x.

B. Neighbor list exchange in P2P Zeus
In P2P Zeus, each bot has a unique 160-bit identifier or key,

which can also be represented as a 40-hexadecimal character
string. This key is part of the information stored about any
peer’s entry in a bot’s neighbor list. Although P2P Zeus is an
unstructured P2P botnet, the entries in a bot’s neighbor list are
observed to be biased towards the bot’s own key. This behavior
is influenced by the neighbor list restriction mechanism of
P2P Zeus. Bots that need information about other bots in the
network use the requestL(s) method to ask their neighbors,
where s is the key of the requesting bot. However, it is
important to note that s can also be generated or spoofed,
as long as it is a valid key. On receiving a valid request, a
bot returns a subset of its neighbor list of size l, in P2P Zeus
usually l = 10, which are close to key s of the query with regard
to the XOR distance. More precisely, as detailed in Algorithm
1, the queried node replies as follows: It first constructs a list
L containing up to the first ten elements listed in its neighbor
list NL (Line 2). Then, it iterates over all remaining elements
in NL (Line 3). The key of each element NL[i] is compared
to the current elements of L one-by-one (Line 5). As soon as
an element NL[i] with a smaller XOR-distance to s than L[j]
is found, L[j] is replaced with NL[i] (Line 6). In this fashion,
entries or keys with closer XOR-distance are more likely to be
returned (Line 5), but only the entry with the closest key to s
is guaranteed to be returned. The second-closest key might not
be returned if it is the first element in the initial list L (Line
2). Rather, the queried nodes overwrite the second closest key
with the closest key and does not consider it further. So, some
closer keys in L might be disregarded despite some non-closest
keys being returned. Moreover, the order of the entries stored
in a bot’s neighbor list is non-deterministic, e.g., they can be
sorted by the XOR-distance of the neighbor to the bot or by
the timestamp an entry was last updated.

Based on the above observation, we present an algorithm
for strategically spoofing keys during crawling, to guarantee
the retrieval of the complete neighbor list of a given node.

C. ZEUSMILKER algorithm design
Our goal is to retrieve the complete neighbor list NL of

a node using the method requestL(s) for various spoofed
keys s. Algorithm 2 achieves our goal by subsequently dis-
covering pairs of keys (x, y) such that the neighbor list NL
is guaranteed not to contain any keys in I(x, y) and thus
NL ∩ I(x, y) = ∅. The algorithm terminates if no set I(x, y)
can contain additional and yet unknown keys, guaranteeing that
the list of returned keys L is identical with NL. We assume
that the neighbor list does not change while crawling it. This
assumption is valid because the neighbor list of stable P2P
Zeus bots typically changes only every 30 minutes during the
periodic membership maintenance cycle. We further assume
that we are not affected by any rate limiting countermeasures
such as that in P2P Zeus, as they can be easily circumvented
using proxies, i.e., milking the bots in a distributed manner
using crawlers with unique IP addresses.

Before discussing Algorithm 2 in detail, we shortly explain
how spoofing with two consecutive keys s1, s2 ∈ I(x, y) results
in a set I(x, y), such that all keys in I(x, y) are not contained
in NL. Consider the left-hand side of Figure 1: Here, all
possible b-bit keys are represented in the form of a ring. Note
that all the keys in the right half of the ring are closer to 0(b)
than 1(b) with regard to the XOR distance, whereas all keys
on the left half are closer to 1(b). Similarly, when considering
only the keys on the right half, the keys in the upper right
quarter are closer to 00∣∣1(b− 2) than to 01∣∣0(b− 2), whereas
the keys in the lower right quarter are closer to 01∣∣0(b − 2).
In this manner, one can successively divide the keys into sets
according to which of the two keys they are closer to. We
leverage this division to identify the set of keys not contained
in the neighbor list NL and the set of keys possibly contained
in NL as follows. Let

s1 = c∣∣0∣∣1(i), s2 = s1 + 1 = c∣∣1∣∣0(i) (1)

for some common prefix c and i ≥ 0, i.e., s1 is a key ending
with a string of 1s, and s2 is the next higher key, thus ending
with a string of 0s. First note that for any keys id1 and id2,
XOR(id1, id2) starts with a string of 0s of the length of their
common prefix. So, if id1 shares a longer common prefix
with id2 than with a key id3, id1 is closer to id2 than to
id3 with regard to the XOR distance. Now, assume that we
know that NL contains keys k1 and k2 starting with c∣∣0 and
c∣∣1, respectively. As a consequence, x and y, the closest keys
in NL to s1 and s2 with respect to the XOR distance, have to
start with c∣∣0 or c∣∣1, respectively. So, requestL(s2) returns
a list containing a key y = c∣∣1∣∣ry = s2 + ry for some i-bit
string ry . Similarly, requestL(s1) returns a list containing a
key x = c∣∣0∣∣rx = s1−1(i)+rx for some rx. We now show that
indeed x and y are such that NL∩I(x, y) = ∅. By the definition
of I(x, y), I(x, y) = I(x, s2) ∪ I(s1, y). The claim that
NL ∩ I(x, y) = ∅ follows from showing that all zx ∈ I(x, s2)
and zy ∈ I(s1, y) have a lower XOR distance to s1 or s2 than x
or y, respectively, and hence cannot be contained in NL. Note
that all z ∈ I(x, y) share the prefix c. Consider zy = c∣∣1∣∣q ∈
I(s1, y) for an i-bit string q, so that XOR(z, s2) = q = z − s2.
As a consequence, we have XOR(zy, s2) < XOR(y, s2) for
all keys zy ∈ I(s1, y), so that zy ∉ NL if y is the closest
key to s2 in NL. Similarly, for any zx = c∣∣0∣∣q ∈ I(x, s2),
rx < q ≤ 1(i), so that XOR(zx, s1) = 1(i) − q and hence
XOR(zx, s1) < XOR(x, s1). Hence, zx ∉ NL if x is the

Algorithm 2: ZeusMilker()
// Initialization

1 L← ∅ // Crawled keys
// Get smallest key

2 M← requestL(0(b))
3 L← L ∪M
4 kfirst ← getClosestKey(M,0(b))
// Get largest key

5 M← requestL(1(b))
6 L← L ∪M
7 klast ← getClosestKey(M,1(b))
8 if kfirst ≠ klast&&kfirst ≠ klast − 1 then
9 R← {(kfirst,klast)} // Undiscovered sets

// While not fully discovered
10 while not R = ∅ do

// Get keys for spoofing
11 (k1,k2)← R.pop()
12 c← getCommonPrefix(k1,k2)
13 s1 ← c∣∣0∣∣1(b − length(c) − 1)
14 s2 ← c∣∣1∣∣0(b − length(c) − 1)

// Execute queries and add new sets
15 if k1 < s1 then
16 M← requestL(s1) // query with s1

17 L← L ∪M
18 x← getClosestKey(M, s1)
19 if x ≠ k1 then
20 R← R ∪ {(k1, x)}

21 if k2 > s2 then
22 M← requestL(s2) // query with s2

23 L← L ∪M
24 y ← getClosestKey(M, s2)
25 if y ≠ k2 then
26 R← R ∪ {(y,k2)}

27 return L

closest returned key to s1. In summary, all keys in I(x, y)
are not contained in NL, and we have thus found a method to
identify sets of keys that are guaranteed not to be contained
in NL. However, without further queries it is not possible to
say which keys in I(k1, x) and I(y,k2) are contained in NL.

Example III.1. As an example, consider the neighbor list
NLex = {00000,00100,01010,01100,10010,11000} and as-
sume for simplicity that each query via requestL() only re-
turns l = 1 key. Assume we have already discovered k1 = 00000
and k2 = 01100 with common prefix c = 0 and now query
with s1 = 0∣∣0∣∣111 = 00111 and s2 = 01000. requestL(s1)
is guaranteed to return x = 00100 and requestL(s2) returns
y = 01010. However, the reply does not tell us if any keys in
I(k1, x) = {00001,00010,00011} or I(y,k2) = {01011} are
contained in NLex.

Algorithm 2 now subsequently identifies sets of keys which
cannot be contained in NL, while at the same time finding new
keys k1 and k2 that are used for determining the keys s1 and
s2. Initially, the list of discovered keys L is empty (Line 1).
Then s1 = 0(b) and s2 = 1(b) are used as keys for the first two
queries with the returned list requestL(s1) and requestL(s2)

added to the set of discovered keys (Lines 2 -7). In particular,
requestL(s1) has to contain the smallest key kfirst and largest
klast in NL, i.e., the closest keys to 0(b) and 1(b). Hence, the
set I(klast,kfirst) is the first detected set of keys that are not
contained in NL. However, I(kfirst,klast) potentially contains
undiscovered keys, given that it is non-empty, i.e., the two
keys are not equal or consecutive. So, the pair (kfirst,klast) is
the first element in the set R (Line 9), which contains pairs
(k1,k2) whose common prefix defines the spoofed keys in
future iterations. In each iteration of the while loop (Lines 10
- 26), such a pair (k1,k2) is considered. The common prefix
c of k1 and k2, determines the two spoofed keys s1 and s2,
such that s1 = c∣∣0∣∣1(b− length(c)− 1), which consists of the
common prefix c, 0, and a string of 1s achieving a total length
of b, is the largest key closer to k1 than to k2 (in terms of the
XOR-distance). Analogously, s2 = c∣∣1∣∣0(b − length(c) − 1) =
s1 + 1 is the smallest key closer to k2 than k1 (Lines 12-14).
If s1 is not bigger than k1, I(k1, s1) is empty, so it is not
necessary to query with s1. Analogously, if s2 is not smaller
than k2, I(s2,k2) is empty. If s1 is bigger than k1, the method
call requestL(s1) is executed, the returned list M added to L,
and the key x is chosen as the closest key to s1 in M (Lines
16-18). Similar, if s2 is smaller than k2, y is chosen as the
closest key to s2 in the set returned by requestL(s2) (Lines
22-24). As discussed above, keys in I(x, y) are guaranteed
to be not contained in NL, hence only the sets I(k1, x) and
I(y,k2) can possibly contain undiscovered keys, if they are
non-empty. Hence, the pairs (k1, x) and (y,k2) are added to
R (Line 20 and 26, respectively).

Example III.2. We use the exemplary neighbor list NLex =
{00000,00100,01010,01100,10010,11000} from Example
III.1, which is sorted for simplicity and indexed by idj =
NLex[j], for j = 0 . . .5. The ring on the left of Figure
1 depicts how these keys map onto the whole key space.
For simplicity, we again assume that only l = 1 keys are
returned per query. However, for larger l < ∣NLex∣, the same
number of steps are required to guarantee that all keys in
NLex are returned, though individual keys might be discovered
much earlier. Initially, two queries are conducted, one with
key 11111 (Line 5, Algorithm 2) and one with key 00000
(Line 2, Algorithm 2), which will return two entries from
NL, namely kfirst = id0 = 00000 (Line 4, Algorithm 2) and
klast = id5 = 11000 (Line 7, Algorithm 2), respectively. Hence,
we know that there are no keys in I(i5, i0). Then as described
in the following and as can be seen on the right of Figure 1,
five iterations of the loop are executed as follows:
1) The pair of keys k1 = id0 = 00000, and k2 = id5 = 11000
is retrieved from R. They do not share a common prefix, so
we spoof with s1 = 01111 and s2 = 10000, and discover
x = id3 = 01100 and y = id4 = 10010. The pairs (id0, id3)
and (id4, id5) are added to the set R. After this step, we can
guarantee that NLex does not contain keys in I(id3, id4), since
they would have been returned when spoofing IDs s1 or s2.
2) The pair (id4, id5) = (10010,11000) is retrieved, sharing
common prefix 1. The spoofed keys are thus s1 = 10111 and
s2 = 11000. Because s2 is identical to id5 and hence there
are no keys in I(s2, id5), it is not necessary to spoof with s2.
Spoofing with s1 does not result in any closer key to s1 than
id4. No new pairs are added to R, and it is guaranteed that
NLex does not contain keys in I(id4, id5).
3) The pair (id0, id3) = (00000,01100) is processed. Spoofing

00000

01000

11000

10000 01111

10111

00111

11111

00000 11111

00000
00000

11000
11111

1) (
-
11111 à 11000) & (

+
00000 à 00000)

00000 11111

2) (
-
01111 à 01100) & (

+
10000 à 10010)

00000 11111

3) (
-
10111 à 10010)

00000 11111

4) (
-
00111 à 00100) & (

+
01000 à 01010)

00000 11111

5) (
-
01011 à 01010)

01100
10010

11000
11111

Neighbor List, NLex :
1. 00000
2. 00100
3. 01010
4. 01100
5. 10010
6. 11000

Entries in the neighbor list

S2 Keys

S1 Keys

+
-

00000
00000

01100
11111

00000
00000

00000
00000

00100
01010

00000 11111

6) (
-
00011 à 00000)

ALL ENTRIES MILKED

00100
10111

00000
00000

01100
11111

Fig. 1. Visual representation of the key space (Example III.2). The ’+’ keys discover the next bigger key, whereas the ’−’ keys reveal the next smaller key.

with s1 = 00111 and s2 = 01000 leads to the discovery of
id1 = 00100 and id2 = 01010. Therefore, the pairs (id0, id1)
and (id2, id3) are added to R. As a consequence, we know
that NLex does not contain keys in I(id1, id2).
4) The pair (id2, id3) = (01010,01100) is retrieved, but
spoofing with s1 = 01011 (spoofing s2 = 01100 not required)
reveals that NLex does not contain keys in I(id2, id3).
5) The pair (id0, id1) = (00000,00100) is retrieved, but
spoofing with s1 = 00011 (spoofing s2 = 00100 not required)
reveals that NLex does not contain keys in I(id0, id1).

The example indicates that in each step, Algorithm 2
discovers a pair of keys x and y, such that it is guaranteed
that the neighbor list NL does not contain keys in I(x, y). In
the following, we will show that the observation holds for all
steps and utilize it to derive the complexity of Algorithm 2.

D. Analysis
In this section, we first show that at least 2n queries

are needed to guarantee that an n-elemental neighbor list is
retrieved, regardless of the choice of spoofed keys. Secondly,
we analyze Algorithm 2 and show that it indeed terminates
in at most 2n steps. Our results are mainly concerned with
the worst-case complexity, defined as the maximal cost, i.e.,
number of queries in our cases, required by any input, i.e.,
neighbor lists in our case, for the algorithm to terminate.

More precisely, we show the optimality of our proposed
algorithm as follows:

1) The complexity of the problem to obtain a provable
complete neighbor list is 2n, i.e., there exist some
neighbor lists for which at least 2n keys need to
be spoofed regardless of the algorithm for choosing
these keys.

2) Our proposed algorithm needs at most 2n steps to
obtain a provable complete neighbor list, and is hence
optimal with regard to the worst-case complexity.

By the above, we only show that the algorithm achieves
optimal performance with regard to the worst-case complexity,

which is not necessarily optimal for all inputs. However,
we later show that while there are lists that require less
steps, most neighbor lists actually require at least 2n spoofed
keys, regardless of how these keys are chosen. Hence, our
performance bound is indeed of practical relevance. In order
to present a more general result, we consider b-bit keys rather
than the concrete value of b = 160 used in P2P Zeus.

Proposition III.3. There exist neighbor lists NL with n dis-
tinct keys, such that the number of queries needed to guarantee
the complete retrieval of NL is at least 2n for any choice of
spoofed keys.

Due to space constraints, the proof is presented in Ap-
pendix A. The idea of the proof is to divide the set
I(idj , id((j+1) mod n)), idj being the j-th smallest key in NL,
into two sets Fj− and Fj+, such that keys in Fj− are closer to
idj and keys in Fj+ closer to idj+1. We then show that each
non-empty Fj− or Fj+ requires at least one query, adding up
to a total of 2n queries.

We have shown that neighbor lists exist such that 2n
spoofed keys are needed by any algorithm. However, as
indicated by Example III.2, it is possible that a neighbor list
can be discovered using less than 2n queries. Moreover, there
exist an edge-case where total entries in neighbor lists might
be empty or shorter than the minimum reply size, i.e., ∣NL∣ < l.
For these we only need exactly one query to retrieve the full
list. The existence of such examples raises the question if the
worst-case complexity is a suitable measure, or if it is only
relevant for few constructed examples. However, Proposition
III.4 and the subsequent calculation of Eq. 2 for realistic botnet
sizes m show that the vast majority of neighbor lists require
at least 2n spoofed keys for crawling, such that our algorithm
is not only optimal with regard to the worst-case complexity,
but also for nearly all inputs.

Proposition III.4. The probability that the guaranteed re-
trieval of an n-elemental neighbor list in a P2P Zeus botnet
with m bots and b-bit keys requires less than 2n spoofed keys

is at most

m(m − 1)
2b+1

(3 + 4(b − 1) ln 2) . (2)

Due to space constraints, we provide the proof in the
Appendix C. The proof idea is to provide a bound on the
probability that any Fj− or Fj+, as defined in the proof of
Proposition III.3, is empty. The result is obtained using basic
probability theory.

In P2P Zeus, typically, b = 160-bit keys are used, while the
size of most such botnets is usually not bigger than several ten
thousands. For such parameters, Eq. 2 is negligible, being less
than 10−33, so that indeed the vast majority of neighbor lists
require 2n crawl requests to reveal all entries. A more detailed
discussion of Eq. 2 can be found in Appendix B.

Now, we consider Algorithm 2 and show that its complexity
is indeed 2n.

Proposition III.5. Algorithm 2 guarantees the complete re-
trieval of any n-elemental neighbor list NL and requires at
most 2n queries.

Proof: Denote the keys in NL by id0, . . . , idn−1, sorted
in ascending order. In the first step of Algorithm 2 (Lines
2 - 7), two keys are spoofed to guarantee that NL does not
contain keys in I(idn−1, id0). In each iteration of the loop,
Algorithm 2 requires at most two queries with spoofed keys
s1 and s2 = s1 + 1 to guarantee that NL does not contain keys
in I(idj , idj+1) for some 0 ≤ j ≤ n − 2 (Lines 10-26), idj
being the closest key to s1 and idj+1 being the closest key to
s2. So, n − 1 iterations of the loop are required to provably
retrieve the neighbor list NL, since each pair (idj , idj+1) is
only considered once. Hence, the two initial queries in addition
to the maximum of 2(n− 1) queries executed during the loop
results in an upper bound of 2n on the number of queries.

We have now shown that Algorithm 2 achieves the lowest
possible worst-case complexity. Note that the number of re-
quired steps can be much lower: If the keys contained in the list
are consecutive, i.e., idj+1 = idj +1 , our algorithm terminates
in n steps. Furthermore, there are some neighbor lists, for
which we cannot achieve the lowest possible number of steps,
e.g., for a neighbor list consisting of only 0(b) and 1(b),
Algorithm 2 requires four steps, but a variant of Algorithm
2 that starts using 0∣∣1(b − 1) and 1∣∣0(b − 1) for spoofing
terminates within two steps. The example clearly shows that
for any choice of initially spoofed keys and hence for any
algorithm, there is some neighbor list for which the minimal
number of steps is not achieved. However, Proposition III.4
shows that we are optimal for the vast majority of cases.

In the following, we present the evaluation results of
ZEUSMILKER on a real P2P Zeus dataset along with some
additional analysis.

E. Evaluation
In this section, we first describe the details of the used

dataset and explain our experimental setup. Then, we present
the evaluation results of our proposed ZEUSMILKER algorithm
in comparison to other existing techniques. In more detail,
we specifically investigate the impact of different neighbor list
sizes n and different numbers of returned entries l per query on
the efficiency of the different crawling techniques. Moreover,

we also evaluate their efficiency in the presence of neighbor
lists with different key distributions.

1) Experimental setup: In the following, we first describe
the used dataset. Then we describe our simulation model and
the metrics we used in the evaluation. Finally, we summarize
our experiments with our initial expectations on them.

a) Dataset: For our evaluation, we utilized a real-world
P2P Zeus dataset that consists of crawled information collected
in a duration of approximately five hours from the botnet on
25th April 2013. The sanitized dataset contains information of
900 bots that have between 10 to 70 entries in their respective
neighbor list. The median of the dataset is 34 entries with a
standard deviation of 18.37. This dataset is provided as input
data for our simulation model.

b) Simulation model: We implemented the P2P Zeus
membership management protocols in OMNeT++1 by making
use of OverSim2 [15] as our simulation framework. Our imple-
mentation includes the neighbor list restriction mechanism as
described in Algorithm 1. For the generation of random keys
within OverSim, we utilized the OverlayKey class to generate
keys following a uniform distribution. For each iteration of the
experiment, data for each bot in the simulation is uniformly
selected at random from the described dataset depending on
the investigated neighbor list size. The bots are then assigned
the selected key and have their neighbor list filled with the
associated neighbor list entries. Since the order of entries in a
P2P Zeus bot’s neighbor list is non-deterministic, we applied
a random permutation to the contained entries before storing
them in the neighbor list. To evaluate the efficiency of the
neighbor list restriction mechanism in P2P Zeus, we imple-
mented the following algorithms in our simulation framework:

● ZEUSMILKER is our proposed algorithm for strate-
gically spoofing keys to milk all entries from a bot’s
neighbor list implemented as per Algorithm 2.

● Random is the only known algorithm used for mon-
itoring P2P Zeus [4]. The spoofed keys are 160-bit
keys generated uniformly at random.

● BinaryHalving spoofs keys by halving the ID space in
the manner of a binary search algorithm. For each it-
eration of the algorithm, two keys are derived between
two previously crawled keys. This is repeated until the
maximum number of permitted requests is reached.
For that, BinaryHalving initially spoofs with 0(b) and
1(b), and adds the pair (0(b),1(b)) to a FIFO queue
Q. Then it executes the following statement T times:

1) Remove the head (K1,K2) of Q and deter-
mine the keys h1 = ⌊K1+K2

2
⌋ and h2 = h1 + 1,

2) Crawl using spoofed keys h1 and h2, and
3) Add (K1, h1) and (h2,K2) to Q.

c) Metrics: We measured the success of anti-crawling
countermeasures and the performance of ZEUSMILKER by the
discovery ratio. It is defined as the fraction of a neighbor list
that is retrieved during crawling. Hence, the discovery ratio
is an assessment for both the efficiency of the crawling algo-
rithm as well as the effectiveness of the botnet’s countermea-
sures, allowing the comparison of different crawling and anti-
monitoring strategies. For each parameter set, the results are

1http://www.omnetpp.org
2http://www.oversim.org

averaged over 50 independent trials with confidence intervals
of 95%. Furthermore, for each iteration of our experiments, a
unique seed value has been used to initialize the simulation
models and to choose a random node from the dataset. In all
our experiments, we limit the maximum number of requests
to 2n requests, in agreement with the worst-case complexity
for retrieving a complete neighbor list (see Proposition III.3).

d) Influence of n and l: One of the countermeasures to
hinder successful botnet monitoring is to restrict the number of
entries that are returned after receiving neighbor list request,
e.g., Sality [2] returns only a single entry for each request. For
this reason, we investigate the influence of different neighbor
list sizes n and neighbor list return sizes l. In this investigation,
we expect ZEUSMILKER to successfully obtain all entries with
at most 2n requests in every scenario as shown in Proposition
III.5. Meanwhile, Random and BinaryHalving are expected to
miss some entries. The Random crawling strategy retrieves a
randomized set of entries and has a high probability of missing
one or more keys. BinaryHalving, in contrast, divides the
search space strategically, but does not make use of knowledge
gained in previous steps and as such may continue to query
regions with few or no keys intensively. Furthermore, we
expect the performance of all algorithms to increase with
increasing l, because more keys are discovered in each step.
The increase should be particularly strong for Random as the
probability to be successful when spoofing randomly is highly
dependent on the number of trials.

e) Influence of different key distributions: The distribu-
tion of keys within a real world P2P Zeus bot’s neighbor list is
biased to the key of the bot itself [4]. However, due to the P2P
Zeus neighbor list return mechanism, different key distributions
can influence the number of unique entries that are able to be
retrieved using choices of spoofed keys. Therefore, we have
further analyzed the performance of the algorithms under two
additional types of key distributions within a neighbor list:

● Random Distribution: A node’s neighbor list contains
only randomly generated keys.

● Consecutive Entries: A node’s neighbor list contains
only consecutive keys, e.g., Kj+1 = Kj +1 mod 2160.

We expect ZEUSMILKER to retrieve all entries within a
bot’s neighbor list independent of the chosen distribution.
However, we even expect it to retrieve Consecutive Entries in
only n requests instead of 2n, as it is not necessary to check
for additional keys between two neighboring keys. In contrast,
Random and BinaryHalving are expected to require more
crawling requests in this setting. Especially, BinaryHalving is
expected to perform worst, as it spoofs many keys that yield no
new knowledge in the Consecutive Entries setting. However, in
the Random Distribution setting, both are expected to be closer,
but still inferior to the crawling performance of ZEUSMILKER,
as a result of the uniform key distribution.

2) Results: In the following, we summarize our evaluation
findings on the impact of l, n, and on the impact of the assumed
key distribution on the three different crawling algorithms.

a) Impact of the size of the returned neighbor lists l:
First, we discuss the impact of the size of the returned neighbor
list l. Figure 2(a) summarizes the discovery ratio for a default
parameter setting of a P2P Zeus botnet with n = 50 and
l = 10 in dependence on the number of requests for all three
crawling strategies. As can be seen, ZEUSMILKER is able to

successfully retrieve all entries in a bot’s neighbor list within
100 requests as guaranteed by Proposition III.5. At the same
time, Random discovers only 92% and BinaryHalving even
only 53% of all entries in a bot’s neighbor list. Thus, the results
confirm our expectation that BinaryHalving is not suitable
for such biased neighbor lists. BinaryHalving performs poorly
because of retrieving many duplicate entries as a result of
spoofing keys within a range of the key space that provides no
additional new information. For all algorithms, the number of
initially retrieved entries increases fast with only a few queries.
Later on, when only few keys are left undiscovered, the slope
of the performance curve decreases. Note that during the first
few queries, the Random crawling algorithm even manages to
discover more unique keys than ZEUSMILKER. A potential
reason for the initially weaker performance of ZEUSMILKER
is the choice of the two spoofed keys s1, s2 (see Eq. 1), which
are potentially very close and hence can result in returned
sets with a high overlap. However, ZEUSMILKER is clearly
superior to Random and BinaryHalving in discovering larger
portions or even the complete neighbor list.

Figure 2(b) shows the discovery ratio in dependence on
the number of crawling requests for n = 50 and l = 1. As
can be seen, ZEUSMILKER still retrieves all entries within the
predicted 100 requests, though at a lower speed than for l = 10.
As only one entry per request can be obtained, the number of
retrieved keys initially increases linearly and then converges
slowly to a discovery ratio of 1. The decrease in performance is
more apparent for Random and BinaryHalving: The discovery
ratio for both approaches decreases drastically compared to
l = 10, to 19% for BinaryHalving and 37% for Random at 100
requests. A more detailed analysis of the impact of l is given
in Figure 2(c) showing the discovery ratio in dependence on
l for n = 50. ZEUSMILKER successfully obtains all neighbor
entries within 2n = 100 queries independent of l, whereas the
discovery ratios after 2n queries of the other two strategies are
significantly affected by l. Since both algorithms are unable
to strategically spoof keys, the fraction of retrieved keys
drastically decreases when the number of returned keys l is
reduced. Hence, the results of this analysis match our initial
expectation that smaller values of l restrict the amount of new
knowledge the crawling algorithms could obtain. However,
since ZEUSMILKER is able to strategically spoof keys to
discover all entries in a neighbor list, its ability to retrieve
the complete list remains unaffected by different values of l.

b) Impact of the size of the neighbor lists n: Next, we
analyze the impact of the size of the neighbor list n on the
crawling performance. Figure 2(d) shows the discovery ratio
of the different algorithms in dependence on n for l = 10. Inde-
pendent of n, ZEUSMILKER successfully discovers all nodes
in a neighbor list. In contrast, the performance of Random
slowly decreases with increasing n, because it is harder to
discover large sets simply by random trials than on smaller
sets. The slight decrease in performance of BinaryHalving is
not significant.

c) Influence of different key distributions: Apart from
n and l, different key distributions in neighbor lists can
also influence the performance of crawling algorithms. Figure
3(a) shows the discovery ratio in dependence on the number
of requests for all three crawling strategies in the Random
Distribution setting. As expected, ZEUSMILKER is able to
obtain all entries with at most 2n = 100 requests, whereas

0 20 40 60 80 100
No. of Sent Requests

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(a) P2P Zeus Milking Analysis (n = 50, l = 10)

0 20 40 60 80 100
No. of Sent Requests

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(b) P2P Zeus Milking Analysis (n = 50, l = 1)

1 2 3 4 5 6 7 8 9 10
Size of Returned Neighbor List, l

(No. of Entries)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(c) P2P Zeus Milking Analysis (n = 50)

30 40 50 60 70
Size of Neighbor List, n

(No. of Entries)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(d) P2P Zeus Milking Analysis (l = 10)

Fig. 2. Performance analysis of ZEUSMILKER, Random, and BinaryHalving for various neighbor list sizes n and returned neighbor list sizes l

0 20 40 60 80 100
No. of Sent Requests

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(a) P2P Zeus Milking Analysis for Random Distribution

0 20 40 60 80 100
No. of Sent Requests

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(b) P2P Zeus Milking Analysis for Consecutive Entries

Fig. 3. Performance analysis of ZEUSMILKER, Random, and BinaryHalving for different key distributions in neighbor lists (n = 50, l = 1)

Random and BinaryHalving only discover about 80% and
90% of all neighbor list entries, respectively. Both strategies
perform considerably better than for the real-world data set,
increasing their discovery ratio by more than a factor of 2

and 4, respectively. This improved performance arises from
the well distributed keys, resulting in less duplicates during
successive crawling attempts. As expected, BinaryHalving also
performs much better than Random when the uniform key

distribution assumed by BinaryHalving is indeed given.
The inability of BinaryHalving to deal with non-uniform

key distributions becomes evident when considering Consec-
utive Entries. BinaryHalving mostly discovers only two keys,
i.e., discovery ratio is about 4%. A potential reason is the
repeated spoofing of keys at distances away from all keys in
the neighbor list. As a result, the same two keys are returned
repetitively. ZEUSMILKER, in contrast, is able to successfully
discover all entries with only n requests instead of 2n, because
the sets I(Kj ,Kj+1) are empty, so that no additional n keys
need to be spoofed to verify that I(Kj ,Kj+1) ∩ NL = ∅. In
contrast, the performance of the Random crawling is similar to
its performance when considering randomly distributed keys.

d) Evaluation Summary: We have extensively evaluated
the performance of ZEUSMILKER. As guaranteed by the
proof in Section III-D, ZEUSMILKER always retrieves the
complete neighbor list in at most 2n steps. Thus, it significantly
outperforms existing crawling strategies like Random and
BinaryHalving. Moreover, the performance of ZEUSMILKER
is influenced neither by the size of a bot’s neighbor list n nor
by the number of returned entries l during each crawling step.
Different key distributions have little to no effect on Random,
whereas BinaryHalving is heavily influenced. ZEUSMILKER,
in contrast, even performs significantly better on a consecutive
distribution as only n rather than 2n requests are required to
retrieve the complete neighbor list.

Next, to anticipate the next step of the botmasters, we
present some advanced botnet countermeasures.

IV. COUNTERMEASURES

As algorithms like ZEUSMILKER circumvent the anti-
crawling strategies of botnets, we anticipate the retaliation
of the botmasters. For that, we introduce and evaluate more
advanced countermeasures against crawling in this section.

A. Requirements of Crawling Countermeasures
There are three basic requirements:
1) Restricted Neighbor List: Any countermeasure should

ensure that only limited neighbor entries are returned per query
to prevent easy exposure of entries in the neighbor list.

2) Inference Prevention: To prevent an attacker from infer-
ring about the entries in a neighbor list, the requester should
not be able to influence the decision of which subset of the
entries are returned. In addition, requesters should always
be returned the same subset of entries whenever possible to
restrict their view on the neighbor list of other bots. In this
manner, analysts are prevented from obtaining an accurate
snapshot of the whole topology, making takedown attempts
unlikely to succeed.

3) Connectivity Preserving: The connectivity and hence
the resilience to node failures and takedowns of the botnet
should not be negatively affected, i.e., each benign bot should
be equally often contained in the neighbor lists of other bots.
Hence, the algorithm should not bias replies towards specific
keys for all requesters. Such a bias might lead to an uneven
degree distribution, which drastically reduces the resilience of
the topology towards targeted node takedowns [16].

B. Anti-Crawling countermeasures
We implemented two countermeasures to improve the exist-

ing P2P Zeus neighbor list restriction mechanism according to

our previous requirements, along with another countermeasure
that simply returns random nodes from the neighbor list. We
briefly present the countermeasures and discuss the expecta-
tions in the following.

1) Random Node Return: In Sality [2], bots return exactly
one randomly chosen entry from their respective neighbor
lists to the requesting bot. Hence, the requesting bot has no
influence on the returned entries at all. However, by returning
different sets for each query, a considerable portion of the
neighbor list can be easily obtained using repeated queries.
Hence, both Random and BinaryHalving are expected to be
comparable in their discovery ratio.

2) Bit-XOR+: This countermeasure adds additional ran-
domness at the side of the recipient of a neighbor list request.
The recipient generates a random key uniformly for each IP
address it receives a request from and stores it. This key is then
XOR-ed with the key of the requesting node and the resulting
key is then used as an input for Algorithm 1 to return the
neighbor entries. Hence, the set of keys that is returned is now
biased towards the new XOR-ed key and an attacker loses its
ability to strategically spoof keys. As a result, the discovery
ratio of Random and BinaryHalving should both be the same
as in P2P Zeus. ZEUSMILKER is expected to perform worse
because of the introduced randomness, as it might incorrectly
assume that all keys have been retrieved and stops querying. By
including a randomly generated key into the selection process,
each entry in the neighbor list has the equal likelihood to be
returned, such that Bit-XOR+ is expected not to negatively
affect the connectivity.

3) Bit-AND: Bit-AND is a variation of the Bit-XOR+ coun-
termeasure that executes a bit-wise AND operation between
the stored key and the requesters key before using the resulting
key to return neighbor list entries. However, due to the nature
of the AND operation whereupon each bit of the resulting
key has a tendency to be 0 with a probability 3/4, the set of
returned keys for Bit-AND is likely to be biased towards keys
starting with 0s. On the one hand, such a bias considerably
decreases the performance of all observed crawling strategies,
because the returned sets are expected to have a larger overlap
in contrast to uniformly selected sets. On the other hand,
keys starting with 1s are expected to be present in fewer
neighbor lists, potentially damaging the connectivity and thus
the resilience of the botnet. Therefore, while Bit-AND is
expected to achieve the best performance out of the three
countermeasures, its disadvantages likely outweigh its benefits.

C. Evaluation Results
In the following, we present the analysis results of our

countermeasures in Figure 4 which shows the discovery ratio
of the different crawling algorithms in dependence on the
different neighbor list return sizes.

The Random Node Return analysis in Figure 4(a) indicates
the inefficiency of this countermeasure in restricting the infor-
mation gained by a crawler. Both Random and BinaryHalving
were able to retrieve more than 80% of a bot’s neighbor
list in all parameter settings after 100 requests. However,
ZEUSMILKER performed poorly as expected due to the in-
herent incorrect assumptions made on the returned keys that
led the algorithm falsely assuming there are no more keys left
undiscovered.

Our results for the Bit-XOR+ countermeasure indicate that

1 2 3 4 5 6 7 8 9 10
Size of Returned Neighbor List, l

(No. of Entries)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(a) Random Node Return

1 2 3 4 5 6 7 8 9 10
Size of Returned Neighbor List, l

(No. of Entries)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(b) Bit-XOR+

1 2 3 4 5 6 7 8 9 10
Size of Returned Neighbor List, l

(No. of Entries)

0.0

0.2

0.4

0.6

0.8

1.0

D
is

co
v
e
ry

 R
a
ti

o

ZeusMilker

Random

BinaryHalving

(c) Bit-AND

Fig. 4. Performance analysis of ZEUSMILKER, Random, and BinaryHalving on the presence of different advanced countermeasures (n = 50)

Random performs best with an average of about 80% of nodes
discovered for l ≥ 4, as displayed in Figure 4(b). Hence,
the performance of Random is largely not influenced by bits
flipping, as can be seen from comparing Figure 4(b) and Figure
2(c), showing the performance of the crawling for the unaltered
P2P Zeus. Although BinaryHalving initially performs better
than ZEUSMILKER for l ≤ 7, its performance degrades for
l > 7, as a result of spoofing keys that yield more duplicate
entries. However, ZEUSMILKER’s strategy of deriving keys
based on previous knowledge provides more randomness, i.e.,
variety of key prefixes, in the spoofed keys, hence obtains a
slight improvement than BinaryHalving towards the end.

Bit-AND, as displayed in Figure 4(c), presents a better
restriction mechanism than Random Node Return and Bit-
XOR+ as the discovery ratio of all crawling algorithms is
kept below 50% for l ≤ 10. The discovery ratio increases with
the size of the returned neighbor lists l in a close to linearly
manner. Although the poor performance of all strategies in
terms of discovery ratio indicates the effectiveness of this
countermeasure, the bias resulting from this strategy may
negatively affect the robustness of the resulting overlay.

Although Bit-AND is more effective in hampering the
performance of the crawling algorithms, the introduced bias in
the returned keys contradicts to our requirements. While the
Random Node Return strategy is able to prevent an attacker
to provably discover all entries, the amount of information
exposed to crawlers is significantly high. Thus, from the
presented results above, we can conclude that Bit-XOR+ is
the best suitable countermeasure for future P2P botnets that not
only prevents any strategic milking attempts, i.e., cannot derive
any information, but is also able to ensure a more resilient
overlay due to the randomness that results from its design.

V. CONCLUSION

In this work, we proposed ZEUSMILKER, an algorithm to
circumvent the neighbor list restriction mechanism of P2P
Zeus. We evaluated the performance of our proposal theo-
retically to prove that ZEUSMILKER is capable to provably
obtain the complete neighbor list of a bot of size n in at
most 2n crawling steps. Our extensive simulation results also
indicate that ZEUSMILKER performs significantly better than
existing crawling mechanisms on P2P Zeus. As seen in the
past, botmasters are continuously adapting their botnets against
new threats and challenges from the defenders. Hence, to
anticipate future countermeasures by the botmasters, we have

evaluated the effectiveness of several anti-crawling techniques
against ZEUSMILKER. The suggested Bit-XOR+ countermea-
sure prevents any attempts to strategically retrieve entries from
a given neighbor list by introducing additional randomness at
the side of the recipient of a neighbor list request.

As future work, we intend to investigate the impact of these
advanced anti-crawling countermeasures on the structure of the
resulting botnet overlay. This would allow us to better under-
stand the impact of design choices across different botnets and
to predict the design of future botnets.

REFERENCES

[1] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly Resilient Peer-to-Peer Botnets Are Here: An Analysis of
Gameover Zeus,” in Proceedings of the 8th IEEE International Confer-
ence on Malicious and Unwanted Software, 2013.

[2] N. Falliere, “Sality: Story of a peer-to-peer viral network,” Symantec
Corporation, Tech. Rep., 2011.

[3] J. Wyke, “The ZeroAccess Botnet – Mining and Fraud for Massive
Financial Gain,” Sophos, Tech. Rep. September, 2012.

[4] C. Rossow, D. Andriesse, T. Werner, B. Stone-gross, D. Plohmann,
C. J. Dietrich, H. Bos, and D. Secureworks, “P2PWNED: Modeling
and Evaluating the Resilience of Peer-to-Peer Botnets,” in Symposium
on Security & Privacy. IEEE, 2013.

[5] J. Kang and J.-Y. Zhang, “Application Entropy Theory to Detect New
Peer-to-Peer Botnet with Multi-chart CUSUM,” in Second International
Symposium on Electronic Commerce and Security. IEEE, 2009.

[6] B. Stone-gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet :
Analysis of a Botnet Takeover,” in 16th Conference on Computer and
communications security. ACM, 2009.

[7] S. Karuppayah, M. Fischer, C. Rossow, and M. Muhlhauser, “On
Advanced Monitoring in Resilient and Unstructured P2P Botnets,” in
International Conference on Communications. IEEE, 2014.

[8] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in Peer-to-Peer Systems, ser.
LNCS. Springer Berlin Heidelberg, 2002, vol. 2429.

[9] C. Kanich, K. Levchenko, and B. Enright, “The Heisenbot Uncertainty
Problem: Challenges in Separating Bots from Chaff.” LEET, 2008.

[10] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measure-
ments and Mitigation of Peer-to-Peer-based Botnets: A Case Study on
Storm Worm.” LEET, 2008.

[11] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: a botnet protocol
based on Kademlia,” in 4th International Conference on Security and
Privacy in Communication Networks. ACM, 2008.

[12] G. Yan, S. Chen, and S. Eidenbenz, “RatBot: Anti-enumeration Peer-
to-Peer Botnets,” in Information Security, ser. LNCS. Springer Berlin
Heidelberg, 2011, vol. 7001.

[13] G. Yan, D. T. Ha, and S. Eidenbenz, “AntBot: Anti-pollution peer-to-
peer botnets,” Computer Networks, vol. 55, no. 8, Jun. 2011.

[14] R. Hund, M. Hamann, and T. Holz, “Towards Next-Generation Botnets,”
in European Conf. on Computer Network Defense. IEEE, Dec. 2008.

[15] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Over-
lay Network Simulation Framework,” in Global Internet Symposium.
IEEE, May 2007.

[16] R. Cohen, K. Erez, D. Ben-Avraham, and S. Havlin, “Breakdown of
the Internet under Intentional Attack,” Physical Review Letters, vol. 86,
no. 16, Apr. 2001.

APPENDIX A
PROOF OF PROPOSITION III.3

Proof: We enumerate the keys idj in NL, such that
idj < idj+1 for j = 0 . . . n − 2. For 1 ≤ j ≤ n − 1, denote
the common prefix of idj−1 and idj by cpj = cp(idj , idj+1).
Let s0 = 0(b) and sj = cpj ∣∣1∣∣0(b − ∣cpj ∣ − 1) be the
smallest key in I(idj , idj+1 mod n) that is closer to idj than
to idj−1 mod n with regard to the XOR distance (see Eq. 1
for more detailed explanation on why this is the case). In
the following, we consider the sets Fj− = I(idj−1 mod n, sj)
and Fj+ = I(sj − 1, idj) for j = 0 . . . n − 1, and explain
that at least one spoofed key has to be chosen in Fj− and
Fj+ each for all j. First note that by construction, the 2n
sets Fj− ∪ Fj+ for j = 0 . . . n − 1 are all disjunct. For non-
empty Fj∗ with 0 ≤ j ≤ n − 1 and ∗ ∈ {+,−}, consider an
arbitrary key x ∈ Fj∗. If x is the first element in a neighbor
list NL′ = NL ∪ {x}, it is only returned if a spoofed key s
with XOR(s, x) < XOR(idi, x) for all 0 ≤ i ≤ n − 1 is used.
However, by the construction of the sets Fj∗, all such keys
are contained in Fj∗. Thus, at least one query is required
for each non-empty set Fj∗. Hence, for all neighbor lists
NL with only non-empty Fj∗, 2n queries are required. Such
lists exists: An example for such a neighbor list is given by
idj = j ⋅ 16+ 1, i.e. the first n hexadecimal numbers ending in
1. Then Fj+ = {j ⋅16} and Fj− = {j ⋅16+2, . . . , id(j+1) mod n}
for all j. So, a lower bound on the worst-case complexity of an
algorithm for guaranteed retrieval of neighbor lists is indeed
2n.

APPENDIX B
PROBABILITY OF NON-OPTIMAL PERFORMANCE

Figure 5 gives an upper bound on the probability that
a neighbor list in a network of m bots is not retrieved by
ZEUSMILKER at the optimal cost for m ≤ 1,000,000. The
probability is computed based on Eq. 2.

APPENDIX C
PROOF OF PROPOSITION III.4

Proof: In this proof, we use P (A) to denote the probabil-
ity of an event A, P (A∣B) for the probability of A conditioned
on B, and ∅ to denote the empty set. The proof of Proposition
III.3 gives a precise description of neighbor lists requiring
2n spoofed keys, stating that the bound holds if all sets Fj−
and Fj+ are non-empty. We now give an upper bound on
the likelihood that an empty Fj− or Fj+ exists. Because the
distribution of keys in a neighbor list is unknown, we obtain
an upper bound on the probability that for any pair (x, y) of
keys in the network, the set I(x, y) of keys between them is
empty.

Consider any two keys x and y: Recall that I(x, y) denotes
the set of keys between x and y. Choose x and y such that
∣I(x, y)∣ ≤ ∣I(y, x)∣, i.e., we consider the shortest segment on

0 200000 400000 600000 800000 1000000
Network Size, m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

p

1e 34

Fig. 5. Quantity in Eq. 2 for b=160 bits

a ring of length 2b between x and y. The size of I(x, y)
is then given by ∣I(x, y)∣ = min{∣y − x∣,2b − ∣y − x∣} − 1
Furthermore, let F− and F+ be the keys in I(x, y) closer to
x and y with regard to the XOR, respectively. If ∣I(x, y)∣ ≤ 1,
either F− or F+ is empty. Otherwise, there are ∣I(x, y)∣ + 1
possibilities that the keys in I(x, y) could be divided be-
tween F− and F+, and only for two of them F− or F+ is
empty, namely if either x = cp(x, y)∣∣0∣∣1(b − ∣cp(x, y)∣ − 1)
or y = cp(x, y∣∣1∣∣0(b − ∣cp(x, y)∣ − 1). Hence F− or F+ is
empty with probability 2

∣I(x,y)∣+1
. Let D denote the random

variable giving ∣I(x, y)∣ + 1 for two uniformly chosen keys.
The probability that D attains the value d is

P (D = d) = {
1
2b , d ∈ {0,2b−1}
2
2b 1 ≤ d ≤ 2b−1 − 1,

so that F− or F+ is empty with probability

P (F− = ∅ ∪ F+ = ∅) =
2b−1

∑
d=0

P (D = d)P (F− = ∅ ∪ F+ = ∅∣D = d)

= 1

2b
⎛
⎝

3 +
2b−1−1

∑
d=2

4

d
+ 2

2b
⎞
⎠

(3)

≤ 1

2b
(3 + 4(b − 1) ln 2) .

The last step follows because for the harmonic series ∑m
d=1

1
d
≈

lnm+ρ for the Euler-Mascheroni constant ρ = 0.577 Note
that the keys in a neighbor list are not distributed uniformly,
but are usually close to the node’s own key. However, the
keys of the m nodes in the network are selected uniformly at
random. We hence consider the probability that for none of
the m(m− 1)/2 pairs of keys, the set of keys closer to one of
them is empty. An upper bound on the desired probability is
obtained by a union bound using Eq. 3

P (⋃
j

Fj− = ∅ ∪ Fj+ = ∅) ≤ m(m − 1)
2b+1

(3 + 4(b − 1) ln 2) .

